OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
FORMULA
a(n) = [x^n] (5*x^4 + 2*x^3 - 6*x^2 + x + 1) / (1 - 2*x)^3.
a(n) = n! [x^n] (exp(2*x)*(18*x^2 + 52*x + 35) - 10*x - 19)/16.
a(n) = 2^(n-5)*(70 + 43*n + 9*n^2) for n >= 2. - Stefano Spezia, Nov 29 2020
MAPLE
a := proc(n) option remember; if n < 5 then return [1, 7, 24, 70, 193][n + 1] fi;
6*a(n - 1) - 12*a(n - 2) + 8*a(n - 3) end: seq(a(n), n = 0..29);
MATHEMATICA
CoefficientList[Series[(5 x^4 + 2 x^3 - 6 x^2 + x + 1)/(1 - 2 x)^3, {x, 0, 29}], x]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Nov 29 2020
STATUS
approved