[go: up one dir, main page]

login
A339179
Irregular triangle read by rows: for n >= 2, 2 <= k <= floor(n/2) + 1, T(n,k) = the number of semi-meanders with n top arches, a first arch of length one and k arch groupings.
1
1, 1, 1, 1, 2, 2, 4, 4, 2, 10, 10, 4, 24, 24, 14, 4, 66, 66, 34, 8, 174, 174, 106, 42, 8, 504, 504, 284, 98, 16, 1406, 1406, 878, 390, 114, 16, 4210, 4210, 2486, 1002, 258, 32, 12198, 12198, 7738, 3652, 1270, 290, 32, 37378, 37378, 22714, 9962, 3140, 642, 64, 111278, 111278, 71370, 34986, 13370, 3794, 706, 64
OFFSET
2,5
FORMULA
T(2,2) = T(3,2) = 1.
For n >= 4, T(n,2) = T(n,3) = A000682(n-2).
For n >= 6 and k >= 4, T(n,k) = Sum {x = k-1..floor(n/2)} (A259689(T(n-2,x))).
For n >= 4, A301620(n-3) = Sum {k = 4..floor((n+2)/2)} (T(n,k)).
EXAMPLE
For n = 6: /\ = arch of length one;
/\ /\ /\ /\
/ \ //\\ / \ //\\ 4 with 2 groupings
/ /\\ // \\ / \ ///\\\
/ / \\ // /\\\ //\ /\\ ////\\\\
/\ //\//\/\\\, /\ ///\//\\\\, /\ ///\\//\\\, /\ /////\\\\\,
/\ /\
//\\ /\ /\ / \ 4 with 3 groupings
///\\\ /\ //\\ //\\ /\ //\ \
/\ /\ ////\\\\, /\ //\\ ///\\\, /\ ///\\\ //\\, /\ /\ ///\\/\\,
/\ 2 with 4 groupings
/ \ /\ /\
/\ /\ /\ //\/\\, /\ //\\ /\ //\\, T(6,2) = 4, T(6,3) = 4, T(6,4) = 2;
Irregular triangle begins:
n\k (2) (3) (4) (5) (6)
2: 1
3: 1
4: 1 1
5: 2 2
6: 4 4 2
7: 10 10 4
8: 24 24 14 4
9: 66 66 34 8
10: 174 174 106 42 8
...
CROSSREFS
Cf. A259689, A301620, Row sums: A000682(n-1).
Sequence in context: A290633 A038674 A330639 * A182923 A263856 A090277
KEYWORD
nonn,tabf
AUTHOR
Roger Ford, Nov 26 2020
STATUS
approved