[go: up one dir, main page]

login
A338038
a(n) is the sum of the primes and exponents in the prime factorization of n, but ignoring 1-exponents.
6
0, 2, 3, 4, 5, 5, 7, 5, 5, 7, 11, 7, 13, 9, 8, 6, 17, 7, 19, 9, 10, 13, 23, 8, 7, 15, 6, 11, 29, 10, 31, 7, 14, 19, 12, 9, 37, 21, 16, 10, 41, 12, 43, 15, 10, 25, 47, 9, 9, 9, 20, 17, 53, 8, 16, 12, 22, 31, 59, 12, 61, 33, 12, 8, 18, 16, 67, 21, 26, 14, 71, 10
OFFSET
1,2
COMMENTS
First differs from A106492 for n=64.
LINKS
Chris Bispels, Muhammet Boran, Steven J. Miller, Eliel Sosis, and Daniel Tsai, v-Palindromes: An Analogy to the Palindromes, arXiv:2405.05267 [math.HO], 2024.
Daniel Tsai, A recurring pattern in natural numbers of a certain property, arXiv:2010.03151 [math.NT], 2020.
Daniel Tsai, A recurring pattern in natural numbers of a certain property, Integers (2021) Vol. 21, Article #A32.
FORMULA
a(n) = A008474(n) for powerful numbers (A001694).
EXAMPLE
For n = 18 = 2*3^2, a(18) = 2 + (3+2) = 7.
MAPLE
f:= proc(n) local t;
add(t[1]+t[2], t=subs(1=0, ifactors(n)[2]));
end proc:
map(f, [$1..100]); # Robert Israel, Oct 13 2020
MATHEMATICA
a[1] = 0; a[n_] := Plus @@ First /@ (f = FactorInteger[n]) + Plus @@ Select[Last /@ f, # > 1 &]; Array[a, 100] (* Amiram Eldar, Oct 08 2020 *)
PROG
(PARI) a(n) = my(f=factor(n)); vecsum(f[, 1]) + sum(k=1, #f~, if (f[k, 2]!=1, f[k, 2]));
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Oct 08 2020
STATUS
approved