[go: up one dir, main page]

login
A337930
Number of ways to write n as the sum of two positive integers s,t such that s <= t and phi(s) = phi(t) where phi is the Euler totient function (A000010).
1
0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 0, 1, 2, 2, 1, 1, 0, 2, 1, 3, 1, 1, 3, 2, 1, 1, 0, 3, 1, 1, 3, 2, 0, 1, 0, 2, 1, 2, 2, 2, 0, 2, 2, 2, 0, 2, 1, 3, 1, 1, 2, 2, 0, 3, 1, 2, 1, 2, 0, 1, 2, 2, 0, 1, 3, 4, 1, 4
OFFSET
1,10
FORMULA
a(n) = Sum_{i=1..floor(n/2)} [phi(i) = phi(n-i)], where phi is the Euler totient function (A000010) and [ ] is the Iverson bracket.
EXAMPLE
a(10) = 2; 10 = 6 + 4 and phi(6) = phi(4), 10 = 5 + 5 and phi(5) = phi(5).
MATHEMATICA
Table[Sum[KroneckerDelta[EulerPhi[i], EulerPhi[n - i]], {i, Floor[n/2]}], {n, 100}]
CROSSREFS
Sequence in context: A005087 A050332 A369258 * A340691 A216658 A214020
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Sep 30 2020
STATUS
approved