[go: up one dir, main page]

login
A337824
a(0) = 0; a(n) = n^2 - (1/n) * Sum_{k=1..n-1} (binomial(n,k) * (n-k))^2 * k * a(k).
2
0, 1, 2, -15, 16, 2505, -60264, -606515, 131316928, -4813100271, -339213768200, 62401665573621, -2075963863814928, -745086903175541927, 140250562903680456332, 808225064553580739325, -5491409141464496462591744, 1013058261721909845376508449, 127689148764914765889971316600
OFFSET
0,3
LINKS
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = log(1 + x * BesselI(0,2*sqrt(x))).
Sum_{n>=0} a(n) * x^n / (n!)^2 = log(1 + Sum_{n>=1} n^2 * x^n / (n!)^2).
MAPLE
S:= series(log(1+x*BesselI(0, 2*sqrt(x))), x, 31):
0, seq(coeff(S, x, n)*(n!)^2, n=1..30); # Robert Israel, Jan 07 2024
MATHEMATICA
a[0] = 0; a[n_] := a[n] = n^2 - (1/n) * Sum[(Binomial[n, k] (n - k))^2 k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[Log[1 + x BesselI[0, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 24 2020
STATUS
approved