%I #23 Nov 21 2021 08:13:57
%S 1,1,2,2,3,3,4,5,6,6,8,9,10,11,13,14,16,17,19,22,24,25,28,31,33,35,39,
%T 43,46,48,52,57,60,63,69,75,78,82,88,94,99,104,111,119,124,129,137,
%U 147,153,160,169,179,187,194,204,216,224,233,246,259,267,277,292,308,318,329,343,361
%N Number of addition triangles with apex n where all rows are strongly increasing.
%C An addition triangle has any finite sequence of positive numbers as base; other rows are formed by adding pairs of adjacent numbers.
%C If the bottom row is strongly increasing, then every row is strongly increasing.
%C 8
%C 3<5
%C 1<2<3
%H Seiichi Manyama, <a href="/A337766/b337766.txt">Table of n, a(n) for n = 1..500</a>
%e For n = 5:
%e 5 5
%e 1,4 2,3 5
%e For n = 6:
%e 6 6
%e 1,5 2,4 6
%e For n = 7:
%e 7 7 7
%e 1,6 2,5 3,4 7
%e For n = 8:
%e 8
%e 3,5 8 8 8
%e 1,2,3 1,7 2,6 3,5 8
%e For n = 9:
%e 9
%e 3,6 9 9 9 9
%e 1,2,4 1,8 2,7 3,6 4,5 9
%o (Ruby)
%o def A(n)
%o f_ary = [[n]]
%o cnt = 1
%o while f_ary.size > 0
%o b_ary = []
%o f_ary.each{|i|
%o s = i.size
%o (1..i[0] - 1).each{|j|
%o a = [j]
%o (0..s - 1).each{|k|
%o num = i[k] - a[k]
%o if num > 0
%o a << num
%o else
%o break
%o end
%o }
%o b_ary << a if a.size == s + 1 && a == a.uniq.sort
%o }
%o }
%o f_ary = b_ary
%o cnt += f_ary.size
%o end
%o cnt
%o end
%o def A337766(n)
%o (1..n).map{|i| A(i)}
%o end
%o p A337766(50)
%Y Equivalent sequences with different restrictions on rows: A062684 (none, except terms are positive), A062896 (not a reversal of a counted row), A337765 (weakly increasing).
%Y Cf. A346523.
%K nonn
%O 1,3
%A _Seiichi Manyama_, Sep 19 2020