OFFSET
1,13
FORMULA
a(n) = Sum_{k=1..n} Sum_{i=1..k-1} (ceiling(n/k) - floor(n/k)) * (ceiling(n/i) - floor(n/i)) * (1 - ceiling((i*k)/(i+k)) + floor((i*k)/(i+k))).
EXAMPLE
a(13) = 3; There are 3 distinct positive integer pairs, (s,t), such that s < t < 13 where neither s nor t divides 13, and where (s + t) | (s * t). They are (3,6), (4,12) and (6,12).
MATHEMATICA
Table[Sum[Sum[(1 - Ceiling[(i*k)/(k + i)] + Floor[(i*k)/(k + i)]) (Ceiling[n/k] - Floor[n/k]) (Ceiling[n/i] - Floor[n/i]), {i, k - 1}], {k, n}], {n, 100}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Sep 15 2020
STATUS
approved