[go: up one dir, main page]

login
A337562
Number of pairwise coprime strict compositions of n, where a singleton is always considered coprime.
15
1, 1, 1, 3, 3, 5, 9, 7, 17, 13, 23, 41, 41, 67, 49, 75, 75, 155, 211, 229, 243, 241, 287, 395, 807, 537, 841, 655, 1147, 1619, 2037, 2551, 2213, 2007, 2663, 4579, 4171, 7123, 4843, 6013, 6215, 11639, 13561, 16489, 14739, 15445, 16529, 25007, 41003, 32803
OFFSET
0,4
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..600
FORMULA
a(n > 1) = A337561(n) + 1 for n > 1.
EXAMPLE
The a(1) = 1 through a(9) = 12 compositions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,1) (3,1) (2,3) (5,1) (2,5) (3,5) (2,7)
(3,2) (1,2,3) (3,4) (5,3) (4,5)
(4,1) (1,3,2) (4,3) (7,1) (5,4)
(2,1,3) (5,2) (1,2,5) (7,2)
(2,3,1) (6,1) (1,3,4) (8,1)
(3,1,2) (1,4,3) (1,3,5)
(3,2,1) (1,5,2) (1,5,3)
(2,1,5) (3,1,5)
(2,5,1) (3,5,1)
(3,1,4) (5,1,3)
(3,4,1) (5,3,1)
(4,1,3)
(4,3,1)
(5,1,2)
(5,2,1)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@#&&(Length[#]<=1||CoprimeQ@@#)&]], {n, 0, 10}]
CROSSREFS
A007360 is the unordered version, with non-strict version A051424.
A101268 is the not necessarily strict version.
A220377*6 counts these compositions of length 3.
A337561 does not consider a singleton to be coprime unless it is (1), with non-strict version A337462.
A337664 looks only at distinct parts.
A000740 counts relatively prime compositions, with strict case A332004.
A072706 counts unimodal strict compositions.
A178472 counts compositions with a common factor.
A327516 counts pairwise coprime partitions, with strict case A305713.
A328673 counts pairwise non-coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
Sequence in context: A098353 A073060 A183526 * A087343 A079586 A354953
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 20 2020
STATUS
approved