OFFSET
0,5
COMMENTS
LINKS
J. B. Keiper, Power series expansions of Riemann's function, Math. Comp. 58 (1992), 765-773.
FORMULA
Re(Sum_{m>=1} 1/(1/2 + i*z(m))^n) where n is a positive integer is equal to Keiper's sigma(n)/2.
For n=4 this equals 1/2 + EulerGamma^4/2 - Pi^4/192 + 2*EulerGamma^2*StieltjesGamma(1) + StieltjesGamma(1)^2 + EulerGamma*StieltjesGamma(2) + StieltjesGamma(3)/3.
EXAMPLE
0.0000368136106308...
MATHEMATICA
Join[{0, 0, 0, 0}, RealDigits[N[1/192 (96 + 96 EulerGamma^4 - Pi^4 + 384 EulerGamma^2 StieltjesGamma[1] + 192 StieltjesGamma[1]^2 + 192 EulerGamma StieltjesGamma[2] + 64 StieltjesGamma[3]), 105]][[1]]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Aug 26 2020
STATUS
approved