[go: up one dir, main page]

login
A337388
a(n) = Sum_{k=0..n} n^(n-k) * binomial(2*k,k) * binomial(2*n,2*k).
3
1, 3, 34, 587, 12870, 337877, 10262004, 352436961, 13465074758, 565280386625, 25826066397756, 1274138666796217, 67446164001827356, 3810171540686207283, 228658931521878071080, 14520123059677034441895, 972281769469377542763078, 68443768336740463562683177
OFFSET
0,2
FORMULA
From Vaclav Kotesovec, Aug 31 2020: (Start)
a(n) ~ (2 + sqrt(n))^(2*n + 1/2) / sqrt(8*Pi*n).
a(n) ~ exp(4*sqrt(n) - 4) * n^(n - 1/4) / sqrt(8*Pi) * (1 + 19/(3*sqrt(n)) + 199/(18*n)). (End)
MATHEMATICA
a[n_] := Sum[If[n == 0, Boole[n == k], n^(n - k)] * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Aug 25 2020 *)
PROG
(PARI) {a(n) = sum(k=0, n, n^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}
CROSSREFS
Main diagonal of A337389.
Cf. A337387.
Sequence in context: A105713 A376137 A367840 * A317653 A143638 A262673
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 25 2020
STATUS
approved