OFFSET
1,3
COMMENTS
a(n) is the number of epsilon-paths of the n-cube for n>=2.
LINKS
Kristin DeSplinter, Satyan L. Devadoss, Jordan Readyhough, and Bryce Wimberly, Unfolding cubes: nets, packings, partitions, chords, arXiv:2007.13266 [math.CO], 2020. See Table 1 p. 15.
PROG
(PARI) f(n) = sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) ); \\ A000806
lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4]; ); my(w=vector(nn-1, n, (va[n] + abs(f(n-1)))/2)); vector(#w-1, k, w[k+1] - w[k]); } \\ Michel Marcus, Jul 28 2020
CROSSREFS
KEYWORD
sign
AUTHOR
Michel Marcus, Jul 28 2020
STATUS
approved