[go: up one dir, main page]

login
A336534
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} binomial(n,j) * binomial(k*n+j+1,n)/(k*n+j+1).
6
1, 1, 2, 1, 2, 2, 1, 2, 6, 2, 1, 2, 10, 22, 2, 1, 2, 14, 66, 90, 2, 1, 2, 18, 134, 498, 394, 2, 1, 2, 22, 226, 1482, 4066, 1806, 2, 1, 2, 26, 342, 3298, 17818, 34970, 8558, 2, 1, 2, 30, 482, 6202, 52450, 226214, 312066, 41586, 2, 1, 2, 34, 646, 10450, 122762, 881970, 2984206, 2862562, 206098, 2
OFFSET
0,3
LINKS
FORMULA
G.f. of column k A_k(x) satisfies A_k(x) = 1 + x * A_k(x)^k * (1 + A_k(x)).
T(n,k) = (1/n) * Sum_{j=1..n} 2^j * binomial(n,j) * binomial(k*n,j-1) for n > 0.
T(n,k) = (1/(k*n+1)) * Sum_{j=0..n} binomial(k*n+1,j) * binomial((k+1)*n-j,n-j).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
2, 6, 10, 14, 18, 22, ...
2, 22, 66, 134, 226, 342, ...
2, 90, 498, 1482, 3298, 6202, ...
2, 394, 4066, 17818, 52450, 122762, ...
MATHEMATICA
T[n_, k_] := Sum[Binomial[n, j] * Binomial[k*n+j+1, n]/(k*n+j+1), {j, 0, n}]; Table[T[k, n-k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 01 2021 *)
PROG
(PARI) {T(n, k) = sum(j=0, n, binomial(k*n+1, j)*binomial((k+1)*n-j, n-j))/(k*n+1)}
CROSSREFS
Column k=0-3 give A040000, A006318, A027307, A144097.
If Michael D. Weiner's conjecture on A260332 is correct, column 4 is A260332 for n > 0.
Main diagonal gives A336537.
Sequence in context: A271362 A354555 A263643 * A271852 A224362 A350560
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jul 25 2020
STATUS
approved