[go: up one dir, main page]

login
A336131
Number of ways to split an integer partition of n into contiguous subsequences all having different sums.
12
1, 1, 2, 6, 9, 20, 44, 74, 123, 231, 441, 681, 1188, 1889, 3110, 5448, 8310, 13046
OFFSET
0,3
EXAMPLE
The a(1) = 1 through a(4) = 9 splits:
(1) (2) (3) (4)
(1,1) (2,1) (2,2)
(1,1,1) (3,1)
(2),(1) (2,1,1)
(1),(1,1) (3),(1)
(1,1),(1) (1,1,1,1)
(2,1),(1)
(1),(1,1,1)
(1,1,1),(1)
MATHEMATICA
splits[dom_]:=Append[Join@@Table[Prepend[#, Take[dom, i]]&/@splits[Drop[dom, i]], {i, Length[dom]-1}], {dom}];
Table[Sum[Length[Select[splits[ctn], UnsameQ@@Total/@#&]], {ctn, IntegerPartitions[n]}], {n, 0, 10}]
CROSSREFS
The version with equal instead of different sums is A317715.
Starting with a composition gives A336127.
Starting with a strict composition gives A336128.
Starting with a strict partition gives A336132.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.
Sequence in context: A088902 A265016 A279897 * A095967 A316429 A337639
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 11 2020
STATUS
approved