[go: up one dir, main page]

login
A335897
Perimeters of primitive integer-sided triangles whose angles A < B < C are in arithmetic order.
7
18, 20, 35, 36, 45, 56, 77, 90, 84, 110, 104, 126, 120, 143, 135, 182, 176, 189, 170, 216, 210, 221, 198, 272, 209, 270, 264, 266, 260, 297, 252, 323, 273, 380, 299, 396, 351, 374, 368, 390, 378, 437, 350, 468, 425, 462, 360, 506, 494, 495, 432, 575, 476, 585, 464, 630
OFFSET
1,1
COMMENTS
The triples of sides (a,b,c) of A335893 with a < b < c are in nondecreasing order of middle side, and if middle sides coincide, then by increasing order of the largest side, and when largest sides coincide, then by increasing order of the smallest side. This sequence lists the sums a+b+c (see last example).
Equivalently, perimeters of primitive non-equilateral triangles that have an angle of Pi/3.
Also, sum a+b+c of the solutions of the Diophantine equation b^2 = a^2 - b*c + c^2 with gcd(a,b) = 1 and a < b.
For the corresponding primitive triples and miscellaneous properties and references, see A335893.
This sequence is not increasing. For example, a(8) = 90 for triangle with middle side = 31 while a(9) = 84 for triangle with middle side = 37.
REFERENCES
V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-298 p. 124, André Desvigne.
FORMULA
a(n) = A335893(n, 1) + A335893(n, 2) + A335893(n, 3).
a(n) = A335894(n) + A335895(n) + A335896(n).
EXAMPLE
For b = 7 and c = 8, the two corresponding triangles satisfy:
7^2 = 3^2 - 3*8 + 8^2, with triple (3, 7, 8) and perimeter = 18,
7^2 = 5^2 - 5*8 + 8^2, with triple (5, 7, 8) and perimeter = 20.
For b = 91, there exist four corresponding triangles, two for b = 91 and c = 96 and two for b = 91 and c = 99; the four corresponding perimeters are ordered 198, 272, 209, 270 in the data because:
91^2 = 11^2 -11*96 +96^2, with triple (11, 91, 96) and perimeter 11+91+96 = 198,
91^2 = 85^2 -85*96 +96^2, with triple (85, 91, 96) and perimeter 85+91+96 = 272,
91^2 = 19^2 -19*99 +99^2, with triple (19, 91, 99) and perimeter 19+91+99 = 209,
91^2 = 80^2 -80*99 +99^2, with triple (80, 91, 99) and perimeter 80+91+99 = 270.
MAPLE
for b from 3 to 250 by 2 do
for c from b+1 to 6*b/5 do
a := (c - sqrt(4*b^2-3*c^2))/2;
if gcd(a, b)=1 and issqr(4*b^2-3*c^2) then print(a+b+c, 2*c-a+b); end if;
end do;
end do;
PROG
(PARI) lista(nn) = {forstep(b=1, nn, 2, for(c=b+1, 6*b\5, if (issquare(d=4*b^2 - 3*c^2), my(a = (c - sqrtint(d))/2); if ((denominator(a)==1) && (gcd(a, b) == 1), print1(a+b+c, ", ", 2*c-a+b, ", "); ); ); ); ); } \\ Michel Marcus, Jul 17 2020
CROSSREFS
Cf. A335893 (triples), A335894 (smallest side), A335895 (middle side), A335896 (largest side).
Sequence in context: A164711 A338195 A350038 * A036170 A064271 A113541
KEYWORD
nonn
AUTHOR
Bernard Schott, Jul 17 2020
STATUS
approved