OFFSET
1,24
COMMENTS
Depends only on sorted prime signature (A118914).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).
LINKS
EXAMPLE
The a(n) compositions for n = 12, 24, 48, 36, 60, 72:
(121) (1121) (11121) (1212) (1213) (11212)
(1211) (11211) (1221) (1231) (11221)
(12111) (2112) (1312) (12112)
(2121) (1321) (12121)
(2131) (12211)
(3121) (21112)
(21121)
(21211)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[Select[Permutations[primeMS[n]], MatchQ[#, {___, x_, ___, y_, ___, x_, ___}/; x!=y]&]], {n, 100}]
CROSSREFS
Positions of zeros are A303554.
The (1,2,1)-matching part is A335446.
The (2,1,2)-matching part is A335453.
Replacing "or" with "and" gives A335462.
Permutations of prime indices are counted by A008480.
STC-numbers of permutations of prime indices are A333221.
(1,2,1) and (2,1,2)-avoiding permutations of prime indices are A333175.
Patterns matched by standard compositions are counted by A335454.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.
Dimensions of downsets of standard compositions are A335465.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 20 2020
STATUS
approved