OFFSET
1,1
COMMENTS
The bi-unitary abundancy of a number k is bsigma(k)/k, where bsigma(k) is the sum of bi-unitary divisors of k (A188999).
EXAMPLE
The bi-unitary abundancies of the first terms are 2.031..., 2.005..., 2.0019..., 2.0018..., 2.0015..., ...
MATHEMATICA
fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); seq = {}; r = 3; Do[s = bsigma[n]/n; If[s > 2 && s < r, AppendTo[seq, n]; r = s], {n, 1, 10^6, 2}]; seq
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 21 2020
STATUS
approved