[go: up one dir, main page]

login
A335024
Ratios of consecutive terms of A056612.
1
1, 1, 2, 1, 18, 1, 4, 1, 10, 1, 12, 1, 14, 15, 8, 1, 54, 1, 100, 63, 22, 1, 8, 1, 26, 3, 28, 1, 30, 1, 16, 363, 34, 35, 36, 1, 38, 39, 40, 1, 294, 1, 4, 45, 46, 1, 48, 1, 50, 51, 52, 1, 162, 55, 56, 57, 58, 1, 60, 1, 62, 189, 32, 65, 198, 1, 68, 23, 70, 1, 24, 1, 74, 75, 76, 847, 78, 1, 80
OFFSET
1,3
COMMENTS
Conjecture 1: a(n) = 1 if and only if n + 1 = p^k for some prime p and some positive integer k < p.
Conjecture 2 (due to Alois P. Heinz): a(n) = 1 <=> n+1 in A136327.
LINKS
FORMULA
a(n) = A056612(n+1)/A056612(n).
MAPLE
b:= proc(n) b(n):= (1/n +`if`(n=1, 0, b(n-1))) end:
g:= proc(n) g(n):= (f-> igcd(b(n)*f, f))(n!) end:
a:= n-> g(n+1)/g(n):
seq(a(n), n=1..80); # Alois P. Heinz, May 20 2020
MATHEMATICA
g[n_] := GCD[n!, n! Sum[1/k, {k, 1, n}]];
a[n_] := g[n + 1]/g[n];
Array[a, 80] (* Jean-François Alcover, Dec 01 2020, after PARI *)
PROG
(PARI) g(n) = gcd(n!, n!*sum(k=1, n, 1/k)); \\ A056612
a(n) = g(n+1)/g(n); \\ Michel Marcus, May 20 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Petros Hadjicostas, May 19 2020
STATUS
approved