[go: up one dir, main page]

login
A334785
a(n) is the total number of down steps before the first up step in all 3_2-Dyck paths of length 4*n. A 3_2-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.
11
0, 3, 13, 74, 480, 3363, 24794, 189540, 1488744, 11941820, 97412601, 805602850, 6738919408, 56918898330, 484750343700, 4158094853640, 35891774969112, 311529010178628, 2717299393716836, 23806014817182600, 209389427777770240, 1848322153489496355
OFFSET
0,2
LINKS
A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
FORMULA
a(0) = 0 and a(n) = 3*binomial(4*n, n)/(n+1) - binomial(4*n+2, n)/(n+1) for n > 0.
a(n) ~ c*2^(8*n)*3^(-3*n)/n^(3/2), where c = (11/9)*sqrt(2/(3*Pi)). - Stefano Spezia, Oct 19 2022
EXAMPLE
For n = 1, there are the 3_2-Dyck paths UDDD, DUDD, DDUD. Before the first up step there are a(1) = 0 + 1 + 2 = 3 down steps in total.
MATHEMATICA
a[0] = 0; a[n_] := 3 * Binomial[4*n, n]/(n+1) - Binomial[4*n+2, n]/(n+1); Array[a, 22, 0]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sarah Selkirk, May 11 2020
STATUS
approved