[go: up one dir, main page]

login
A334701
Consider the figure made up of a row of n adjacent congruent rectangles, with diagonals of all possible rectangles drawn; a(n) = number of interior vertices where exactly two lines cross.
7
1, 6, 24, 54, 124, 214, 382, 598, 950, 1334, 1912, 2622, 3624, 4690, 6096, 7686, 9764, 12010, 14866, 18026, 21904, 25918, 30818, 36246, 42654, 49246, 57006, 65334, 75098, 85414, 97384, 110138, 124726, 139642, 156286, 174018, 194106, 214570, 237534, 261666, 288686, 316770, 348048, 380798, 416524, 452794, 492830
OFFSET
1,2
COMMENTS
It would be nice to have a formula or recurrence. - N. J. A. Sloane, Jun 22 2020
FORMULA
Conjecture: As n -> oo, a(n) ~ C*n^4/Pi^2, where C is about 0.95 (compare A115004, A331761). - N. J. A. Sloane, Jul 03 2020
CROSSREFS
Column 4 of array in A333275.
See also A115004, A331761.
Sequence in context: A277014 A033581 A213393 * A274205 A009943 A028595
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Lars Blomberg, Jun 17 2020
STATUS
approved