[go: up one dir, main page]

login
A334520
Primes that are the sum of two cubes.
2
2, 7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227
OFFSET
1,1
COMMENTS
Union of 2 and A002407. Believed to be infinite.
LINKS
Andrew Sutherland, Sums of three cubes, Slides of a talk given May 07 2020 on the Number Theory Web.
Fernando Rodriguez Villegas and Don Zagier, Which primes are sums of two cubes?, CMS Conference Proceedings 15 (1995), pp. 295-306.
EXAMPLE
2 = 1^3 + 1^3.
7 = 2^3 + (-1)^3.
19 = 3^3 + (-2)^3.
MATHEMATICA
Union[{2}, Select[Table[3n^2+3n+1, {n, 93}], PrimeQ]] (* Paul F. Marrero Romero, Oct 21 2024 *)
CROSSREFS
Cf. A002407.
Sequence in context: A034794 A213892 A152608 * A308269 A038562 A140610
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 07 2020
STATUS
approved