OFFSET
1,3
COMMENTS
FORMULA
T(m, k) = [x^k] MPc2even(m, x), with MPc2even(m, x) = Product_{j=1..delta(m)} (x - (2 + R(rpnodd(m)_j, rho(m)))) (evaluated using C(m, rho(m)) = 0), for m >= 2, and MPc2even(1, x) = x. Here R(n, x) is the monic Chebyshev R polynomial with coefficients given in A127672. C(n, x) is the minimal polynomial of rho(n) = 2*cos(Pi/n) given in A187360, and rpnodd(m) is the list of positive odd numbers coprime to m and <= m - 1.
EXAMPLE
The irregular triangle T(m, k) begins:
m, n \ k 0 1 2 3 4 5 6 ...
-------------------------------------------
1, 2: 0 1
2, 4: -2 1
3, 6: -3 1
4, 8: 2 -4 1
5, 10: 5 -5 1
6, 12: 1 -4 1
7, 14: -7 14 -7 1
8, 16: 2 -16 20 -8 1
9, 18: -3 9 -6 1
10, 20: 1 -12 19 -8 1
11, 22: -11 55 -77 44 -11 1
12, 24: 1 -16 20 -8 1
13, 26: 13 -91 182 -156 65 -13 1
14, 28: 1 -24 86 -104 53 -12 1
15, 30: 1 -8 14 -7 1
...
CROSSREFS
KEYWORD
sign,tabf,easy
AUTHOR
Wolfdieter Lang, Jun 15 2020
STATUS
approved