[go: up one dir, main page]

login
A334348
The terms in the Zeckendorf representation of T(n, k) correspond to the terms in common in the Zeckendorf representations of n and of k; square array T(n, k) read by antidiagonals, n, k >= 0.
4
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 3, 3, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 5, 6, 5, 0
OFFSET
0,13
COMMENTS
This array has connections with the bitwise AND operator (A004198).
LINKS
FORMULA
T(n, k) = A022290(A003714(n) AND A003714(k)) (where AND denotes the bitwise AND operator, A004198).
T(n, 0) = 0.
T(n, n) = n.
T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
EXAMPLE
Square array begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13
---+----------------------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1| 0 1 0 0 1 0 1 0 0 1 0 0 1 0
2| 0 0 2 0 0 0 0 2 0 0 2 0 0 0
3| 0 0 0 3 3 0 0 0 0 0 0 3 3 0
4| 0 1 0 3 4 0 1 0 0 1 0 3 4 0
5| 0 0 0 0 0 5 5 5 0 0 0 0 0 0
6| 0 1 0 0 1 5 6 5 0 1 0 0 1 0
7| 0 0 2 0 0 5 5 7 0 0 2 0 0 0
8| 0 0 0 0 0 0 0 0 8 8 8 8 8 0
9| 0 1 0 0 1 0 1 0 8 9 8 8 9 0
10| 0 0 2 0 0 0 0 2 8 8 10 8 8 0
11| 0 0 0 3 3 0 0 0 8 8 8 11 11 0
12| 0 1 0 3 4 0 1 0 8 9 8 11 12 0
13| 0 0 0 0 0 0 0 0 0 0 0 0 0 13
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
nonn,tabl,look,base
AUTHOR
Rémy Sigrist, Apr 24 2020
STATUS
approved