[go: up one dir, main page]

login
A333849
a(n) = gcd(A333848(n), 2*(2*n+1)), for n >= 0.
3
2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 6, 1, 2, 1, 2, 1, 2, 2, 2, 6, 2, 1, 2, 1, 1, 2, 2, 10, 6, 1, 2, 6, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 6, 2, 2, 2, 2, 1, 6, 1, 2, 6, 2, 2, 6, 2, 1, 2, 2, 1, 6, 1, 2, 2, 2, 1, 2, 2, 2, 6, 2, 1, 2, 10, 2, 2, 2, 1, 10, 1, 2, 18, 2, 2, 2, 1, 2
OFFSET
0,1
COMMENTS
For n >= 1, a(n) enters the formula for the length L(2*n+1) = A332441(n) of the directed Euler tour ET(2*n+1, q0 = 1) based on the unsigned Schick sequence for 2*n+1, namely L(2*n+1) = A003558(n)*2*(2*n+1)/a(n). For Schick sequences and references see A332439.
LINKS
Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
FORMULA
a(n) = gcd(A333848(n), 2*(2*n+1)), for n >= 0.
MATHEMATICA
{2}~Join~Table[GCD[Total@ Select[Range[1, m, 2], GCD[#, m] == 1 &], 2 m], {m, Array[2 # + 1 &, 85]}] (* Michael De Vlieger, Oct 15 2020 *)
PROG
(PARI) f(n) = if (n==0, 0, my(m=2*n+1); vecsum(select(x->((gcd(m, x)==1) && (x%2)), [1..m]))); \\ A333848
a(n) = gcd(f(n), 2*(2*n+1)); \\ Michel Marcus, May 05 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, May 01 2020
STATUS
approved