[go: up one dir, main page]

login
A333814
Multiples of 12 whose sum of digits is 12.
1
48, 84, 156, 192, 228, 264, 336, 372, 408, 444, 480, 516, 552, 624, 660, 732, 804, 840, 912, 1056, 1092, 1128, 1164, 1236, 1272, 1308, 1344, 1380, 1416, 1452, 1524, 1560, 1632, 1704, 1740, 1812, 1920, 2028, 2064, 2136, 2172, 2208, 2244, 2280, 2316, 2352, 2424
OFFSET
1,1
COMMENTS
If m is a term, 10*m is also a term.
FORMULA
a(n) ~ A235151(n). - Charles R Greathouse IV, Apr 07 2020
EXAMPLE
732 = 12 * 61 and 7 + 3 + 2 = 12, hence 732 is a term.
MATHEMATICA
Select[12 * Range[200], Plus @@ IntegerDigits[#] == 12 &] (* Amiram Eldar, Apr 06 2020 *)
PROG
(PARI) is(n)=sumdigits(n)==12 && n%4==0 \\ Charles R Greathouse IV, Apr 07 2020
CROSSREFS
Intersection of A235151 (sum of digits = 12) and A008594 (multiples of 12).
Multiples of k whose sum of digits = k: A011557 (k=1), A069537 (k=2), A052217 (k=3), A063997 (k=4), A069540 (k=5), A062768 (k=6), A063416 (k=7), A069543 (k=8), A052223 (k=9), A333834 (k=10), A283742 (k=11), this sequence (k=12), A283737 (k=13).
Cf. A008594 (multiples of 12), A235151 (sum of digits = 12).
Cf. A057147 (a(n) = n times sum of digits of n).
Sequence in context: A039426 A043249 A044029 * A062902 A260106 A260099
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Apr 06 2020
STATUS
approved