[go: up one dir, main page]

login
A333635
Numbers m such that m^2 + 1 has at most 2 prime factors.
0
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 19, 20, 22, 24, 25, 26, 28, 29, 30, 34, 35, 36, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 58, 59, 60, 61, 62, 64, 65, 66, 69, 71, 74, 76, 78, 79, 80, 84, 85, 86, 88, 90, 92, 94, 95, 96, 100
OFFSET
1,2
COMMENTS
Equivalently, numbers m such that m^2 + 1 is prime or semiprime.
Henryk Iwaniec proved in 1978 that this sequence is infinite (see link). By contrast, it is not known whether there are infinitely many primes of the form m^2 + 1 (or infinitely many semiprimes of that form).
The integers that have at most 2 prime factors counted with multiplicity are called almost-primes of order 2 and they are in A037143. Here, as m^2 + 1 is not a square for m > 0, all the semiprimes of this form have two distinct prime factors (A144255), and with the primes of the form m^2 + 1 (A002496), they constitute A248742.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, A1.
LINKS
Henryk Iwaniec, Almost-primes represented by quadratic polynomials, Inventiones Mathematicae 47 (2) (1978), pp. 171-188.
EXAMPLE
10^2 + 1 = 101, which is prime, so 10 is in the sequence.
11^2 + 1 = 122 = 2 * 61, so 11 is in the sequence.
12^2 + 1 = 145 = 5 * 29, so 12 is in the sequence.
13^2 + 1 = 170 = 2 * 5 * 17, so 13 is not in the sequence.
MATHEMATICA
Select[Range[100], PrimeQ[(k = #^2 + 1)] || PrimeOmega[k] == 2 &] (* Amiram Eldar, Mar 30 2020 *)
CROSSREFS
Union of A005574 and A085722.
Cf. A002496 (m^2 + 1 is prime), A005574 (corresponding m).
Cf. A144255 (m^2 + 1 is semiprime), A085722 (corresponding m).
Cf. A248742 (m^2 + 1 is prime or semiprime), this sequence (corresponding m).
Cf. A037143 (numbers with at most 2 prime factors counted with multiplicity).
Sequence in context: A207333 A179182 A298303 * A364379 A102799 A371738
KEYWORD
nonn
AUTHOR
Bernard Schott, Mar 30 2020
STATUS
approved