A supercongruence for A333593

Peter Bala, March 2020

We prove the supercongruence A333593(p) $\equiv 0 \pmod{p^3}$ holds for all prime $p \geq 5$.

The terms of A333593 are defined by means of the binomial sum

$$a(n) = \sum_{k=0}^{n} (-1)^{n+k} \binom{n+k-1}{k}^2.$$
 (1)

Conjecture. We conjecture that the supercongruences

$$a\left(mp^{k}\right) \equiv a\left(mp^{k-1}\right) \left(\mod p^{3k} \right) \tag{2}$$

hold for prime $p \ge 5$ and all positive integers m and k.

We are able to prove the following particular case.

Proposition 1. The supercongruence $a(p) \equiv 0 \pmod{p^3}$ holds for prime $p \geq 5$.

Proof. Let $p \ge 5$ be a prime. We rewrite the binomial sum representation (1) for a(p) by separating out the first (k = 0) and last (k = p) summand and adding together the k-th and (p - k)-th summands for $1 \le k \le \frac{p-1}{2}$ to obtain

$$a(p) = (-1)^{p} + (-1)^{2p} \binom{2p-1}{p}^{2} + \sum_{k=1}^{\frac{p-1}{2}} \left((-1)^{p+k} \binom{p+k-1}{k}^{2} + (-1)^{k} \binom{2p-k-1}{p-k}^{2} \right).$$
(3)

Now by Wolstenholme's theorem [Mes'11, p. 3]

$$\binom{2p-1}{p} = \frac{1}{2} \binom{2p}{p} \equiv 1 \pmod{p^3}.$$
(4)

Hence by (3) and (4)

$$a(p) \equiv \sum_{k=1}^{\frac{p-1}{2}} \left((-1)^{p+k} {\binom{p+k-1}{k}}^2 + (-1)^k {\binom{2p-k-1}{p-k}}^2 \right) \pmod{p^3}.$$
(5)

To establish the Proposition we show that each summand on the right-hand side of (5) is divisible by p^3 .

One easily checks that the summand

$$(-1)^{p+k} \binom{p+k-1}{k}^2 + (-1)^k \binom{2p-k-1}{p-k}^2 = (-1)^k \frac{(p+k-1)!^2 AB}{k!^2 (p-1)!^2 (p-k)!^2},$$
(6)

where the integer factors A and B are given by

$$A = \frac{k!(2p-k-1)!}{(p+k-1)!} + (p-k)!$$
$$B = \frac{k!(2p-k-1)!}{(p+k-1)!} - (p-k)!.$$

Clearly, the first factor $(p + k - 1)!^2$ in the numerator of the right-hand side of (6) is divisible by p^2 since $k \ge 1$. We show that the second factor A in the numerator is divisible by p.

Set $r = p - 2k \ge 1$. Then we have

$$A = \frac{k!(2p-k-1)!}{(p+k-1)!} + (p-k)! = k!(2p-k-1)(2p-k-2)\cdots(2p-k-r) + (p-k)!$$

$$\equiv ((-1)^r k!(k+1)(k+2)\cdots(k+r) + (p-k)!) \pmod{p}$$

$$\equiv (-(k+r)! + (p-k)!) \pmod{p}$$

$$\equiv (-(p-k)! + (p-k)!) \pmod{p}$$

$$\equiv 0 \pmod{p}.$$

Thus the numerator of the right-hand side of (6) is divisible by $p^2 \times p = p^3$. Clearly, the denominator of the right-hand side of (6) has no factor equal to p for k in the summation range $1 \dots \frac{p-1}{2}$. We have therefore shown that each summand $(-1)^{p+k} {\binom{p+k-1}{k}}^2 + (-1)^k {\binom{2p-k-1}{p-k}}^2$ in (5) is divisible by p^3 for $1 \le k \le \frac{p-1}{2}$, completing the proof of the Proposition. \Box

Remarks.

1) Calculation suggests that the above approach of adding pairs of terms to get divisibility by powers of the prime p may extend to proving the more general supercongruences (2).

2) The approach used in Proposition 1 can be used to establish the corresponding supercongruences for A002003, A103885, A119259 and A156894.

A generalisation.

We define a two parameter family of sequences $a_{(r,s)}(\boldsymbol{n})$ by

$$a_{(r,s)}(n) = \sum_{k=0}^{rn} (-1)^{n+k} {\binom{sn+k-1}{k}}^2 \quad r \in \mathbb{N}, s \in \mathbb{Z}.$$
 (7)

so that $a_{(1,1)}(n) = A333593$. We conjecture that the supercongruences

$$a_{(r,s)}\left(mp^{k}\right) \equiv a_{(r,s)}\left(mp^{k-1}\right) \pmod{p^{3k}}$$
(8)

hold for all prime $p \ge 5$ and $r \in \mathbb{N}$ and $s \in \mathbb{Z}$.

Table of values $a_{(r,s)}(n)$

```
\mathbf{r} = \mathbf{1}
```

	n = 1	2	3	4	5	6	7
s = 1	0	6	72	910	12000	163086	2266544
s=2	3	85	2730	95733	3542253	135822622	5341253970
s = 3	8	406	25280	1736670	126295008	9531366796	738304396544
s = 4	15	1233	126555	14375761	1730506890	216286373925	27753139999530
s = 5	24	2926	448224	76083126	13691975024	2558872044190	491030572585248

Table of values $(-1)^n a_{(r,s)}(n)$

$$\mathbf{r} = \mathbf{2}$$

	n = 1	2	3	4	5
s = 1	1	15	496	17655	659001
s = 2	6	910	163086	32043726	6651400756
s = 3	28	13146	7581385	4835694370	3268833458528
s = 4	85	95733	135822622	214041146101	358021699058835
s = 5	201	465751	1376042592	4525666068735	15811226744434576

References

[Mes'11] R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.