[go: up one dir, main page]

login
A333321
a(n) is the number of subsets of {1..n} that contain exactly 1 odd and 4 even numbers.
2
0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 25, 30, 90, 105, 245, 280, 560, 630, 1134, 1260, 2100, 2310, 3630, 3960, 5940, 6435, 9295, 10010, 14014, 15015, 20475, 21840, 29120, 30940, 40460, 42840, 55080, 58140, 73644, 77520, 96900, 101745, 125685, 131670, 160930, 168245, 203665, 212520
OFFSET
0,9
COMMENTS
The general formula for the number of subsets of {1..n} that contain exactly k odd and j even numbers is binomial(ceiling(n/2), k) * binomial(floor(n/2), j).
LINKS
FORMULA
a(n) = ceiling(n/2) * binomial(floor(n/2), 4).
From Colin Barker, Mar 17 2020: (Start)
G.f.: x^8*(4 + x) / ((1 - x)^6*(1 + x)^5).
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11) for n>10.
(End)
EXAMPLE
a(9)=5 and the 5 subsets are {1,2,4,6,8}, {2,3,4,6,8}, {2,4,5,6,8}, {2,4,6,7,8}, {2,4,6,8,9}.
MATHEMATICA
Array[Binomial[Ceiling[#], 1] Binomial[Floor[#], 4] &[#/2] &, 48, 0] (* Michael De Vlieger, Mar 14 2020 *)
PROG
(PARI) concat([0, 0, 0, 0, 0, 0, 0, 0], Vec(x^8*(4 + x) / ((1 - x)^6*(1 + x)^5) + O(x^45))) \\ Colin Barker, Mar 17 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Enrique Navarrete, Mar 14 2020
STATUS
approved