[go: up one dir, main page]

login
A332320
Numbers k that are highly norm-abundant in Gaussian integers, i.e., A103230(m) < A103230(k) for all m < k.
3
1, 2, 3, 4, 5, 6, 10, 15, 18, 20, 26, 30, 50, 60, 70, 78, 90, 130, 150, 170, 180, 210, 260, 270, 330, 390, 510, 630, 780, 870, 910, 990, 1020, 1050, 1110, 1170, 1530, 1890, 1950, 2210, 2340, 2550, 2730, 3510, 4290, 4590, 5070, 5460, 5610, 5850, 6630, 8190, 10530
OFFSET
1,2
COMMENTS
Analogous to highly abundant numbers (A002093), with the norm of the sum of divisors function generalized for Gaussian integers (A103230) instead of the sum of divisors function (A000203).
LINKS
Robert Spira, The Complex Sum of Divisors, The American Mathematical Monthly, Vol. 68, No. 2 (1961), pp. 120-124.
EXAMPLE
The first 6 terms of A103230 are 1, 13, 16, 41, 80, 208, 64, 113, 169, 1040. The record values occur at n = 1, 2, 3, 4, 5, 6, 10, the first 7 terms of this sequence.
MATHEMATICA
s[n_] := Abs[DivisorSigma[1, n, GaussianIntegers -> True]]^2; sm = 0; seq = {}; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^4}]; seq
KEYWORD
nonn
AUTHOR
Amiram Eldar, Feb 09 2020
STATUS
approved