OFFSET
0,3
COMMENTS
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..400
Eric Weisstein's World of Mathematics, Unimodal Sequence.
EXAMPLE
The a(1) = 1 through a(7) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (321) (421)
(11111) (411) (511)
(3111) (2221)
(21111) (3211)
(111111) (4111)
(31111)
(211111)
(1111111)
MATHEMATICA
unimodQ[q_]:=Or[Length[q]<=1, If[q[[1]]<=q[[2]], unimodQ[Rest[q]], OrderedQ[Reverse[q]]]];
Table[Length[Select[IntegerPartitions[n], unimodQ[Differences[Append[#, 0]]]&]], {n, 0, 30}]
CROSSREFS
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Partitions with unimodal run-lengths are A332280.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
The complement is counted by A332284.
The strict case is A332285.
Heinz numbers of partitions not in this class are A332287.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 19 2020
STATUS
approved