OFFSET
0,3
COMMENTS
A sequence is narrowly recursively normal if either it is constant (narrow) or its run-lengths are a narrowly recursively normal sequence covering an initial interval of positive integers (normal).
EXAMPLE
The a(6) = 8 partitions are (6), (51), (42), (411), (33), (321), (222), (111111). Missing from this list are (3111), (2211), (21111).
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(211) (221) (51) (61) (62)
(1111) (311) (222) (322) (71)
(11111) (321) (331) (332)
(411) (421) (422)
(111111) (511) (431)
(3211) (521)
(1111111) (611)
(2222)
(3221)
(4211)
(11111111)
MATHEMATICA
normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
recnQ[ptn_]:=With[{qtn=Length/@Split[ptn]}, Or[Length[qtn]<=1, And[normQ[qtn], recnQ[qtn]]]];
Table[Length[Select[IntegerPartitions[n], recnQ]], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 08 2020
STATUS
approved