[go: up one dir, main page]

login
A332272
Number of narrowly recursively normal integer partitions of n.
6
1, 1, 2, 3, 5, 6, 8, 10, 14, 18, 23, 30, 37, 46, 52, 70, 80, 100, 116, 146, 171, 203, 236, 290, 332, 401, 458, 547, 626, 744, 851, 1004, 1157, 1353, 1553, 1821, 2110, 2434, 2810, 3250, 3741, 4304, 4949, 5661, 6510, 7450, 8501, 9657, 11078, 12506, 14329, 16185
OFFSET
0,3
COMMENTS
A sequence is narrowly recursively normal if either it is constant (narrow) or its run-lengths are a narrowly recursively normal sequence covering an initial interval of positive integers (normal).
FORMULA
For n > 1, a(n) = A317491(n) + A000005(n) - 2.
EXAMPLE
The a(6) = 8 partitions are (6), (51), (42), (411), (33), (321), (222), (111111). Missing from this list are (3111), (2211), (21111).
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(211) (221) (51) (61) (62)
(1111) (311) (222) (322) (71)
(11111) (321) (331) (332)
(411) (421) (422)
(111111) (511) (431)
(3211) (521)
(1111111) (611)
(2222)
(3221)
(4211)
(11111111)
MATHEMATICA
normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
recnQ[ptn_]:=With[{qtn=Length/@Split[ptn]}, Or[Length[qtn]<=1, And[normQ[qtn], recnQ[qtn]]]];
Table[Length[Select[IntegerPartitions[n], recnQ]], {n, 0, 30}]
CROSSREFS
The strict instead of narrow version is A330937.
The normal case is A332277.
The widely normal case is A332277(n) - 1 for n > 1.
The wide version is A332295(n) - 1.
Sequence in context: A122493 A284830 A053873 * A240314 A118053 A252482
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 08 2020
STATUS
approved