[go: up one dir, main page]

login
A331569
Array read by antidiagonals: A(n,k) is the number of binary matrices with k distinct columns and any number of distinct nonzero rows with n ones in every column and columns in decreasing lexicographic order.
11
1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 3, 0, 1, 0, 1, 17, 0, 0, 1, 0, 1, 230, 184, 0, 0, 1, 0, 1, 3264, 16936, 840, 0, 0, 1, 0, 1, 60338, 2711904, 768785, 0, 0, 0, 1, 0, 1, 1287062, 675457000, 1493786233, 21770070, 0, 0, 0, 1, 0, 1, 31900620, 232383728378, 5254074934990, 585810653616, 328149360, 0, 0, 0, 1
OFFSET
0,13
COMMENTS
The condition that the columns be in decreasing order is equivalent to considering nonequivalent matrices with distinct columns up to permutation of columns.
A(n,k) is the number of k-block n-uniform T_0 set systems without isolated vertices.
LINKS
FORMULA
A(n, k) = Sum_{j=0..k} Stirling1(k, j)*A331567(n, j)/k!.
A(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k-1, k-j)*A331571(n, j).
A331651(n) = Sum_{d|n} A(n/d, d).
EXAMPLE
Array begins:
===============================================================
n\k | 0 1 2 3 4 5 6
----+----------------------------------------------------------
0 | 1 1 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 ...
2 | 1 0 3 17 230 3264 60338 ...
3 | 1 0 0 184 16936 2711904 675457000 ...
4 | 1 0 0 840 768785 1493786233 5254074934990 ...
5 | 1 0 0 0 21770070 585810653616 30604798810581906 ...
6 | 1 0 0 0 328149360 161087473081920 ...
...
The A(2,2) = 3 matrices are:
[1 1] [1 0] [1 0]
[1 0] [1 1] [0 1]
[0 1] [0 1] [1 1]
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, k<=1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Jan 20 2020
STATUS
approved