OFFSET
1,2
FORMULA
G.f.: Product_{k>=1} (y/(1-x^k) - y + 1)^A001349(k).
EXAMPLE
Triangle begins:
1;
2;
3, 1;
8, 3;
22, 12;
116, 38, 2;
854, 181, 9;
11125, 1176, 45;
261083, 13351, 233, 1;
11716594, 287048, 1513, 13;
T(4,2)=3 because we have *-* * * , *-*-* * , a triangle with an isolated point.
MATHEMATICA
Needs["Combinatorica`"]; max = 10;
A000088 = Table[NumberOfGraphs[n], {n, 0, max}];
f[x_] = 1 - Product[1/(1 - x^k)^a[k], {k, 1, max}];
a[0] = a[1] = a[2] = 1; coes = CoefficientList[Series[f[x], {x, 0, max}], x];
sol = Solve[Thread[Rest[coes + A000088] == 0]];
c = Drop[Table[a[n], {n, 0, max}] /. sol // Flatten, 1];
Map[Select[#, # > 0 &] &, Drop[CoefficientList[ Series[Product[(y/(1 - x^k) - y + 1)^c[[k]], {k, 1, max}], {x, 0, max}], {x, y}], 1]] // Grid (* after code by Jean-François Alcover in A001349 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Jan 10 2020
STATUS
approved