Density and Generating

Functions of a Limiting
Distribution for Quicksort

by

Kok Hooi Tan
Petros Hadjicostas

Department of Statistics
Carnegie Mellon University

Technical Report No. 568

January, 1993



Density and Generating Functions Of A Limiting
Distribution For Quicksort

Kok Hooi Tan Petros Hadjicostas

January 18, 1993

Abstract

Let X, be the random number of comparisons needed to sort a list of length n by Quick-
sort. Régnier (1989), Rosler (1991), and Hennequin (1991) showed that Y,, = (X,—E(X,))/n
converges in distribution to some random variable X. In addition, Hennequin derived a for-
mula for the cumulants of X. Using results of the above authors we derive properties of
the generating functions of X. Analytical formulas for these functions are derived, but the
formulas are not in closed form. Using the method of successive substitution (Eddy and
Schervish, 1992), we obtain numerical estimates for some of the generating functions. Some
theoretical aspects of the last method are investigated. In addition, we prove that X is
absolutely continuous with respect to the Lebesgue measure, and that its distribution has
support the whole real line.

Keywords: Asymptotic distribution, gamma function, generating functions, Quicksort,
Stirling numbers, successive substitution, zeta function.

1 Introduction

One of the most widely used sorting algorithms is “Quicksort”, which was invented by C. A. R.
Hoare in 1962 ([9]). It has been studied extensively by Knuth [10], Sedgewick [16], Hennequin
(8], and others.

The basic idea behind the simplest case of Quicksort is as follows: Given a list of n distinct
real numbers, one randomly selects a number from this list, and use it as the “pivot” key to
partition the list into two sublists. One sublist contains all the numbers smaller than the pivot;
the other contains all the numbers larger than the pivot. The selection and partition procedures
are then recursively applied to these and subsequent sublists, provided they have more than one
element. When the recursions terminate, the original list is sorted.

If X, is the random number of comparisons needed to sort a list of length n by Quicksort,
then Régnier [13] and Résler [14] have shown that the random variable

— Xn = E(Xn)

n

Yo

converges in distribution to some random variable X with mean 0. The purpose of this paper
is to discuss some properties of the moment, cumulant, and characteristic functions of X. In
addition we show that the density of X exists with respect to the Lebesgue measure, and that its



distribution has support the whole real line. Although an analytical expression for the density
is not known, both Hennequin ([8], p.87) using computer simulation, and Eddy and Schervish
6] using the method of successive substitution give a graph of that density, assuming that it
exists. A graph of the density can be also found at the end of this paper.

Rosler [14] showed that there are independent random variables Y and Z, with the same
distribution as X, and a random variable U, uniformly distributed on [0,1] and independent of
Y and Z, such that ;

L(X)=LUY +(1-U)Z+C(U)), (1)

where £(W) denotes the distribution function of a random variable W, and
C(u) = 2uln(u) +2(1 — u)In(1 — u) + 1. (2)

In section 2 of this paper we prove that the density of X exists, and we prove that its
distribution has support the whole real line. In section 3, we prove that the moment generating,
the cumulant generating, and the characteristic functions of X are analytic in some region
around zero, and we also state some of their properties. In section 4 we indicate that the
method of successive substitution can be used to obtain numerical estimates of the moment
generating function, the characteristic function, and of the density of X. In one case, we prove
the convergence of the successive substitution method. In section 5 we give a formula proved
by Hennequin that gives the cumulants of X and show how it can be implemented in Maple
V for the exact calculation of the cumulants of X. In section 6, we give analytical forms for
the generating functions of X. The main formula is for the moment generating function M(%),
which is
_m(=2t)
e2T(1 + 2t)’

where m(t) = 143,22, Bnt"/n!, where the B, are defined by a complicated recurrence. However,
the expressions are not in closed form, so we try to deduce as much information as possible about
m(t) to help in the future derive better formulas. In section 7 we discuss the coefficient By — its
value cannot be calculated by the recurrence, but this that does not matter much.

For notational convenience the letter ¢ denotes a real number, whereas the letter z denotes a
complex number. Also, we always denote by X the limiting random variable of Y,,. In addition,
all random variables are assumed to be measurable functions from some common probability

space (2, F, P) to the measure space (IR, B) of Borel sets.

vie(-L1: M=

2 The density of X

The purpose of this section is to prove that the density of X with respect to the Lebesgue
measure exists, that is, that the distribution of X is absolutely continuous with respect to the
Lebesgue measure. In addition, we prove that the distribution of X has support the whole real
line, which means that the density of X is positive everywhere except on a set of measure zero.

Theorem 2.1 The distribution function Fx (or, equivalently the distribution measure px) of
the random variable X is absolutely continuous with respect to the Lebesque measure, and thus
it posesses a density.



To prove the theorem we mainly use equation (1), but we first need to prove the following
lemma.

Lemma 2.2 For given (y,z) € IR® define the function h,, : [0,1] — IR by

z+1 ifu=20
hyz(u) =< wy+ (1 —u)z+C(u) ifue(0,1) (3)
¥+1 ifu=1

where C(u) is given by equation (2). If U is uniformly distributed on [0,1], then h, .(U) has a
density with respect to the Lebesgue measure.

Proof: Note that h, . is continuous on [0,11 and continuously differentiable in (0,1).
Actually, for all u € (0,1),

Ba(u) = y=—z+2in(—)
" _ 2, 2
and hy,(u) = e g 0.

Therefore, h;, ,

a minimum, say 3, at u = a=1/(1 4+ exp 7 ) € (0,1). Since by, .(u) < 0 for u € (0,c),
and Ay ,(u) > 0 for u € (a,1), hy.(u) has one continuously differentiable inverse function
[:(B,24+1) — (0,a) for u € (0,a), and another one, r : (8,y+1) — (e, 1), for u € (a,1). This
follows from the inverse function theorem ([15], p.221). Since A, , is strictly decreasing in (0, )
and strictly increasing in (a, 1),/ is strictly decreasing in (5,2 + 1), and r is strictly increasing
in (8,y+ 1). Therefore, I’ is negative, and r’ is positive. Simple e-§ arguments can be used to
show that limy_,(,41)- () = 0, lim,_p+ I(t) = @, limy_,(y41)- 7(2) = 1, and lim;_ g+ r(t) = a.
Thus, we can continuously extend the two inverses of hy . so that their domains are the closed
intervals [,z + 1] and [3,y + 1], respectively. For notational convenience we use the same
symbols / and 7 to denote the two extended functions. Finally, note that lim, ,(,41)- I'(t) = 0,
limy_ g+ I'(t) = —o0, lim,y_,(y41)- 7'(t) = 0, and lim,_, 3+ /() = +c0. These can be proven using
the preceding, and the facts that for t € (8,2 + 1), I'(t) = 1/h ,(I(t)), and for ¢ € (B,y + 1),
(1) = 1/h, (+(0).

Now, denote the Lebesgue measure on the real line by A. We claim that:

increases monotonically from negative to positive values, and thus A, . achieves

Vi€ (B,2+1]: f(m}z’d,\ = 1(t) - U(B) (4)
and Vte (B,y+1]: /(m]rrd,\ = (t)—r(B). (5)

We indicate the proof of the first one; the proof of the second one is similar. Let t € (8,2 + 1]
be given. Choose (€, | n € N) to be a decreasing sequence of numbers in (0, — 3) converging to
zero. Using the fundamental theorem of calculus, the fact that !/’ and [ are both continuous, the
fact that !’ is negative in (3,2 + 1) (and lim,_,(.44)- /(z) = 0), and the monotone convergence
theorem, we have:

Pax = f]jm "Tigne. adA
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Now, without loss of generality, assume that y > z. Then, from the preceding, it follows
that the distribution of h, .(U) is given, for all real ¢, by

0 ift<p
) ey - ip<t<z+l
Phyo(U) S1) = 4 r(z) fz+1<t<y+1
1 ift>y+1

= f(_m t](("", - I’)I(ﬁ.z+1] + rfI[z+1,y+1})dA1

where I4 is the indicator function of the set A. Therefore the density of hy .(U) with respect to
the Lebesgue measure exists. O

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1: For every (y,2) € IR? denote by gy, the density with respect to
A of hy . (U), which was defined in the previous lemma. Using equation (1) of the introductory
section, and the fact that ¥ and Z are independent and have the same distribution as X, we
have that for a given Borel set B:

ux(B)=P(X € B) = P(UY +(1-U)Z+C(U)€ B)
= [ POY 4= D)Z 4 CW) € BI (V.2) = (3 Dldlex X ) 2)

The last step follows from the definition of conditional probability ([2], p.463). Using properties
of conditional probability we have:

px(B) = /IR* P[Uy+(1-U)z+C(U) € B|(Y,2) = (v,2)ld(px X px ) (Y, 2)

= o Plhus(0) € B1(,2) = (0 2)ldlux X )(3:2)
Since U is independent of (Y, Z),

px(B) = [, Phya(U) € B(ux X wx)(v:2)

_[]Rz (jB gy‘z(s)dk(s))d(ﬂx x pux )y, 2)-

Fubini’s theorem implies:

px(B)= [ ( fos usle)dlox X px)(,2)JaA(), ©)
which shows that ux has a density with respect to the Lebesgue measure. O

Having proved that X has a density, we now prove that its distribution function is strictly
increasing. This means that the density of X has support the whole real line, and thus it is
positive almost everywhere.



Theorem 2.3 The distribution function, Fx, of X is strictly increasing.

Proof: The proof uses again equation (1). Observe first that the function C : (0,1) — IR,
defined by equation (2), is continuous and symmetric around u = 1/2, with sup,¢(oq) C(u) =
1 > 0 and minye(o1)C(u) = C(1/2) = 1 —In4 < 0. Thus, given z,2’ € R with z < 2
we may choose ¢ € (0,2’ — z) such that for all n € (0,¢), P[C(U)€ (9,2’ —=z)] > 0 and
P[C(U) € (z—z',—7n)] > 0.

We shall prove that Fiy(z) < Fx(z'). Assume the contrary. Since distribution functions
are non-decreasing, Fx(z) = Fx(z'). Let a = inf{s € R : Fx(s) = Fx(z) = Fx(z')}, and
b2 sup{s € IR : Fx(s) = Fx(z) = Fx(z')}. Obviously, Fx is constant on [a,b), which means
P(X € (a,b))30. Also, for some é € (0,¢€), one or both of the two events below must be true:

(A) Fy is strictly increasing in (a — 6,a).
(B) F¥ is strictly increasing in (b,b+ 6).

Assume case (A), and let I 2 (a - é,a). Then P(X € L) > 0. Note that for y,z € I, if
u € (0,1) is such that C(u) € (§,2"—z) C (6,b—a), then uy+ (1 —u)z+C(u) € [a,b). However,

P(X €(a,b))2 P[Y € I1,Z € [,,C(U) € (§,2' ~z)] = P(X € h)*- P[C(U) € (6,2 —2)] > 0

by the independence of ¥, Z, and UU. But this is a contradiction.
If (A) does not hold, then case (B) is true. Let I = (b, b+ §). Then

P(X € (a,b))> PY € I, Z € ,,C(U) € (z — o', =6)] = P(X € L,)%-P[C(U) € (z — z',—6)] > 0,

which is again a contradiction.
Therefore, Fx(z) < Fx(z'), and so Fx is strictly increasing. O

3 The generating functions of X

The purpose of this section is to show that the generating functions of X are analytic, at least
in some region around zero, and state some of their important properties.

The moment generating function of X will be denoted by M(t), while the cumulant gener-
ating function will be denoted by K(t); that is, K(t) = In M(t). Rosler ([14]) proved that the
M (t) exists for all real . This implies that K(¢) exists for all real ¢. In the following paragraphs,
we state some useful facts about M(t), K(t), and the characteristic function ¢(t) = E(e*¥).
Some of these facts will be useful for section 6, but in general they give us a lot of information
about the nature of the generating functions of X.

Since M(t) exists for all ¢ € IR, it has a Taylor expansion around 0 with infinite radius of
covergence ([2], pp.285-286). Thus, for all ¢ € (—o0, +00), we have

Mt)y=1+) M,,g (7)
p=1 .

where M,, is the p* moment. Now define for all z € C (the complex plane) the function

Mi(z) = 1+ ¥0L; Mp2P/pl. Since this series converges for all real ¢, it has infinite radius of

5
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convergence, and so it should converge for all complex z. But complex-valued power series
are infinitely differentiable, that is, analytic in the complex-analysis sense, inside their circle
of convergence A; in our case, A = C. But this is also equivalent to having Taylor expansion
around any point in A (see, for example, [11], Chapters 1 and 3). (Notice that this is not true
in general in the real line.) Hence, M(t) = M;(t) not only is infinitely differentiable around any
point t € R, but also it has Taylor expansion around any real point.

Another useful fact about M(t) is that it is convez on the real line, since it exists everywhere
in R ([2], p-286).

Having proved that M(t) is analytic, we now prove that K(t) is analytic in some region
around zero. Since M;(0) = 1 # 0, and M;(2) is entire (i.e, analytic for all z € C), then it
is not zero for all z in some region (say, open connected set) around zero. But any branch of
In(z) is analytic in any region that does not include 0. Therefore, In M;(#) is analytic in some
region around zero. In particular, K(t) = In M(t) = In My(¢) has a Taylor expansion with some
positive radius of convergence. As we know,

K(t) = i rapf—

p
.T
p=1 P

(8)

where &, is the pth cumulant of X, given (as stated before) by equation (16). Since the mean of
X is zero, then Ky = M; = 0.

Finally, we state some properties of the characteristic function of X. We know that for any
random variable W the characteristic function E(e'™™) exists for all real t. Since the series
M;(z) is absolutely convergent for all z € C (which means that all the absolute moments of
X exist), then ¢(t) = Mi(it) = 1 + 352, Mp(it)?/p! for all real ¢ ([3], p.168), and of course
is infinitely differentiable. In addition, a characteristic function is uniformly continuous on the
whole real line ([2], p-352), is positive definite, and satisfies the inequality

vieR: |o(t)[<1. (9)

4 The method of successive substitution

The purpose of this section is to show that the method of successive substitution can be used
to obtain numerical estimates for the moment generating function, the characteristic function,
and the density of X. The details of the implementation of this method are described by Eddy
and Schervish [6]. In this section we summarize certain aspects of the method, and we prove a
theoretical result related to this method.

A numerical estimate of the density, fx, was obtained by Eddy and Schervish [6] using
successive substitution on the following integral equation:

fx(z) = fol f_z fx(w) fx (5= elw)—(1- u)y)%dy du. (10)

u

See Figure 1 at the end of the paper. However, questions of convergence of the method of
successive substitution on equation (10), and questions of uniqueness of solution to this equation
have yet to be investigated.



We use numerical integration to approximate the m.g.f. M(t) = [ €' fx(z)dz. A plot of
this function is shown in Figure 2 at the end of the paper. The graph reinforces the conclusion
that M(t) is convex, and suggests that lim_ 4., M(t) = 0.

To obtain a graph of the characteristic function we used successive substitution on the
following integral equation, valid for all real #:

() = j; I B(ut)p((1 - u)t)e ™ du. (11)

This integral equation can be also proved easily from equation (1). A graph of ¢(¢) appears in
Figure 3 at the end of the paper.
For the last case we can prove a theorem concerning the convergence of the method of
successive substitution. Before stating the theorem we will lay some necessary background.
Let D be the space of distribution functions F' with finite second moment and the first
moment equal to zero. We use on D the Wasserstein metric

d(F,G)=inf||Y - Z ||z (12)

where || - ||z denotes the L, norm. The infimum is taken over all random variables Y with
distribution function F and all Z with distribution function G. The space D is a complete
separable metric space, and F,, € D converges in d-metric to F' € D if and only if F,, converges
weakly (in distribution) to F' and [ y?dF,(y) — [, y?dF(y) < co.

Define a map S : D — D by

S(F)=LUY +(1-0)Y +C(U)) (13)

where Y,Y, U are independent, £L(Y) = L(Y) = F, U is uniformly distributed on [0,1], and
C: (0,1) — IR as defined by equation (2). (Recall that £(W) denotes the cdf of the random
variable W.) It can be easily proved that S is well-defined. Rosler [14] proved the following
results:

Theorem 4.1 (a) The map S : D — D is a contraction, and has a unique fized point (in
D).

(b) Every sequence F,S(F),S¥F),...,S™F),..., where F € D, converges in the Wasser-
stein metric to the fized point of §.

(¢) The fized point of S is the distribution Fx of X, which is the weak limit of Y, =
(Xn — E(Xn))/n, where X,, is the random number of comparisons needed to sort a list of length
n by Quicksort.

Using Rdsler’s results we now prove the following theorem. Part of the proof of this theorem
was given by Mark Schervish (personal communication).

Theorem 4.2 Let ¢o(t) be a characteristic function of some distribution F with zero mean and
finite second moment, and for all n > 0 define recursively

bua(0) = [ ' balut)bn((1 — 0 . (14)



Then for each n, ¢n(t) is the characteristic function of S*(F) € D. In addition, ‘?mf ol veal £
Tim_g(t) = (1) (15)

where ¢(t) is the characteristic function of Fx.

Proof: To prove the first claim we proceed by induction. For n = 0 the claim is true, since
¢o(t) is the characteristic function of F = §°(F). Assume the claim is true forn = k,i.e., that
&i(t) is the characteristic function of §¥(G). Choose independent variables U, W, W such that
U is uniformly distributed in [0, 1], and L(W) = L(W) = S¥(F). Then LIUW + (1 - W +
C(U)) = S(S*(F)) = Sk+1(F). But

Sr+1(t)

Il

/01 or(ut)Pr((1 - u)t)e“c(“}du

1 A ; — !
/ E(ettuW)E(ezt(l—u)W)E(ettC(u))du
0

Il

/01 E(exp(it(uW + (1 - w)W + C(u)))du

because W and W are independent. Since also U is independent of W and W, then

Il

P4 (1) L‘ E(exp(it(uW + (1 — VW +C(u) | U = w)du
= Ll E(exp(it(UW + (1 = D)W + C(V)) | U = u)du.

Since U is uniformly distributed in [0, 1],

1 $ear(t) = E(exp(it(UW + (1= U)W +C(U)))
‘ = Q55k+1(p)(t).

.J Therefore, dr41(t) is the characteristic function of §¥+1(F). Hence, the first claim holds for
! n = k + 1. By induction, it holds for all n.
Next, note that since, by Theorem 4.1, S™(F) converges in distribution to the fixed point
Fx of S, then
lim_ én(t) = (1),

a fact that can be found in any standard probability book (e.g., [2], p-359). Since the fixed point
of S is unique, then #(t) is the only characteristic function with zero mean and finite second

moment that satisfies equation (11). O

5 The cumulant formula of Hennequin

'. The purpose of this section is to give a formula for the cumulauts of X, and show how it can be
used to calculate exactly the moments of X. This formula is used in section 6 for the derivation
of analytical forms for the generating functions of X.



Pascal Hennequin, in his thesis ([8], p.83), proves that the p** cumulant of X, for p > 1, is

ziven by the formula
kp = (—=1)72P(4, — (p— 1)X(p)) (16)

where ((p) is the Riemann zeta function; i.e., ((p) = Y2, 1/nP, and where A, are rationals to
be described later.

He also proves (p.84) that there are numbers By, B, ..., By, ...,such that A, = L,(B1, Ba,..., By),
where L,(z1,3,...,2,) are the logarithmic polynomials of Bell, defined by the generating series
‘see p.119 of Hennequin’s thesis)

In(1+ Y zat"/n!) = Y Lu(21,23,...,25) 1" /nl. (17)

n>0 n>0

Hennequin also proves that the sequence (B, | p > 0) satisfies the following implicit recurrence:

Vp>0 iﬂs(p +2,7+ 1)Bp_/(p—7)+ ZP;JF(r)F(p -r)=0 (18)
where i ) r
F(r):Zs(r+1,i+1)G(r-i) (19)
and - .
G(k) = ;% (20)

The s(m,n) are the Stirling numbers of the first kind. Some of their properties are listed in
p.118 of Hennequin’s thesis, and in p.824 of [1]. Note that s(n,n) = $(0,0) = 1 and s(n,0) =
#(0,k) = 0 for any integer n,k > 0, and s(n,k) = 0 for n < k. Also, s(n,1) = (=1)""}(n - 1)l

However, the recurrence given by equations (18), (19), and (20) does not have a unique
solution for two reasons. The first reason is that for p = 0 we get (after some algebra) By = 0
or B = 1. If By = 0, then B,, = 0 for all » > 0; this can be proved easily by induction
on n. Although this is an acceptable solution of the recurrence, it should be rejected for our
problem, for otherwise, equation (16) would not make sense. Thus, By = 1, and it follows that
G(0) = F(0) = 1.

The second reason is that for p = 1, the recurrence gives By = 0/0, i.e., indeterminate. In
other words, by assigning arbitrary values to By, we can get different solutions, (B, | p > 0), of
the recurrence. Since A; = L;(B;), and since By = 1, it can be easily proved (using equation
17)) that Ay = B;. It follows that the value of A; can be arbitrary too. However, in section 7
we shall prove that that no matter what the value of B, is, the cumulant formula of Hennequin
for p > 1) gives the same value. Given this fact, from now until section 7, assume By = 0
without loss of generality.

For p > 1, we can solve the implicit recurrence (18) for B, to get:

P p—1
B, = (-1P( Y s(p+2,r+1)Byer/(p— 1)+ 3 F(r)F(p—1) +
r=1 r=1
p p
2(=1)Pp! 3 (=1)*By—/(al(p— 0)12*) + 23 s(p+ 1L,i+ 1)G(p—1)) [ (p— 1) (21)
a=1 =1



|

where F(r) and G(k) are still given by equations (19) and (20), respectively. The above recur-
rence can be implemented in Maple V using the program shown in Appendix A.

The first twelve values of B, and Ap, both exactly and numerically, are given in Tables 1
and 2. They have been calculated using Maple.

p Exact B, Approximate B,

0 1 1.

1 0 0.

2 7/4 1.75

3 19/8 2.375

4 565/36 15.69444444

5 229621/3456 66.44126157

6 74250517/172800 429.6904919

7 30532750703 /10368000 2944.902653

8 90558126238639 /3810240000 23767.03993

9 37973078754146051/177811200000 213558.4190
10 21284764359226368337/9957427200000 2137576698 - 107
11 1770024989560214080011109/75278149632000000 2351313094 - 10®
12 539780360793818428471498394131/1912817782149120000000 12821912081 - 10°

Table 1: Table of exact and approximate values of B, when B; = 0.

P Exact A, Approximate Ap
0 1 1.
1 0 0.
2 7/4 1.75
3 19/8 2.375
4 937/144 6.506944444
5 85981/3456 24.87876157
6 21096517/172800 122.0863252
T 7527245453 /10368000 726.0074704
8 19281922400989/3810240000 5060.553246
9 7183745930973701/177811200000 404009.7548
10 3616944955616896387/9957427200000 363240.9139
11 273304346447259998403?09/752?8149632000000 .3630593310- 107
|i2 76372354431694636659849988531/19128177821491200000{}0 .3992662299 - 108 |.

Table 2: Table of exact and approximate values of Ap.

depending on the value of By. See section 7.)

(Note that the value of A; could change,

If we know all the B,’s up to order n, we can use the following Maple procedure to find the
A,’s up to order n:

#Define a Maple procedure

a:=proc(n)

local w;
taylor(ln(sum(h(w)*t‘w/w!,w=0..n)),t=0,n+1);
end;

10



If we type a(10), for example, we get a series whose coefficients up to order 10 are A,/p! for
p=0,1,...,10. Actually, the A,’s and B,’s are related through the formula

P

This formula can be used for computing the B,’s from the A,’s, or vice versa, without using
the generating series (17). In any way, we can calculate exactly any cumulant of X, taking, of
course, into consideration the limitations of Maple.

To calculate exactly the moments M, of X from the cumulants &,, we can use the recurrence

Raii My o
V'p 2 0: Afp+1 P Z 'E;_r;)l (23)

Both equations (22) and (23) can be proved easily using the following general lemma.

Lemma 5.1 Let f(t) = S22, axt* and g(t) = T2 ,bxt* > 0 for all t in some non-empiy
interval around zero, such that In g(t) = f(t). Then

VR>0: (n+ Dby = E(k + Dags1bp—k- (24)
k=0

Proof: The result follows from the identity

9()E1(0) = 9(t) - (ng(0) = (1) (25)

by matching the coefficients of the product of the powers series that correspond to the functions
g(t) and 4 (1) to the coefficients of the power series of %g(t). !

One interesting property of the B,’s is that, under the assumption B; = 0, the ratio B,/p!
converges, as p — 00, to some positive number. Numerical calculations show that this limit
is approxiamtely .589164871, but we have not been able to identify this limit analytically. To
prove the existence of the limit we need some material from section 6, so we postpone the proof
until that section. Also, it can proved that the limit exists no matter what the value of B; is.
That proof requires material from section 7. For more details, see Propositions 6.2 and 7.1.

6 Analytical forms of the generating functions of X

The purpose of this section is to give analytical forms for the cumulant generating, moment
generating, and characteristic functions of X. The derivation of these formulas is based on the
well-known fact that for | |< 1,

00 Lk
In (1 - #) vt+25,;ctk) (26)

I

= w:—f{j (k—l)'cm, (27)
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where 7 is Euler’s constant; i.e., ¥ = limpoo(1+1/2 4 -+-+1/n —Inn) = 0.577215664... .
This formula can be found, e.g., in [7], p.939. It implies that for | ¢ [< 1,

o0 4k

(e T(1-1)) =Y %(k —1)k(k). (28)

k=2

The main formula of this section is given in the next theorem.

Theorem 6.1 Let M(t) be the moment generating function of X. Then for | t |< 1/;_;___‘

m(—2t)
M(t) = AT+ 20) (29)
where the function m(z) := 1 + .52, Be2*/k! is analytic in the unit circle, and its Taylor

ezpansion has radius of convergence equal to 1.

Proof: Before we start the proof of the theorem, we first remind the reader that the B,’s
are defined by equations (21), (19), and (20), whereas the A,’s are defined formally (i.e., with
no regard to the convergence of infinite series) by equation (17), or recursively by equation (22).

The proof uses the result that the Cauchy-product of two convergent series, one of which is
absolutely convergent, is a convergent series that equals the product of their limits, a fact that is
not true in general for the product of two conditionally convergent series. (The Cauchy-product
of the series Y%, ax and Y22, b is the series 3 ;24 S o ibr)

Let 7% be the radius of convergence of the cumulant generating function, K(t), given by
equation (8). As we showed in section 3, rx > 0. Hence, using Hennequin’s cumulant formula
(16), we have for | t |<3rg,

In M(—t/2) = K(~t/2) = Zﬂp(—t/?)”
p=2 o
= - (- DK
p=2 *

However, as we said above, the series 3-52,(p — 1)!((p)t?/p! has radius of convergence equal to
1. Therefore, for | ¢ |< 7y := min(1%rk),

N t?

In M(=1/2) = 3 Ap—; — 3 (p = DY(p) - (30)

p=2 op=2

Let 74 be the radius of convergence of the series 3572, A,t7/pl. (Obviously, 74 > 71.) Since the
complex-valued series 3 22, Apz?/p! is analytic for | z |< ra, and the exponential function is
entire, then the function

m(z) := exp ( Z APE—;:) (31)
p=2 P

is analytic for | z |< r4. Therefore, it has a Taylor expansion around zero; also, for all real
t € (—ra,74), we have In m(t) = Y pe2 Apt? /p!. llence, the coefficients of the Taylor expansion
for m(t) should be the B,/p!’s. In addition, for ¢ € (=r1,71),

In M(~t/2) = Inm(t) — In(T(1 = t)e™™), (32)

12



from which equation (29) follows easily for t € (—71/2,71/2).
We need now to prove that equation (29) holds for all t € (—1,1). To achieve this notice
that for |t |< ry,
m(t) = M(—t/2)e”"'T(1 - ¢t). (33)

But M(—t/2) has infinite radius of convergence, and e~7'T(1 — t) has radius of convergence
equal to 1. But also powers series are absolutely convergent at any point inside their interval
~ of convergence. Hence, the series for M H’,}md the series for e~ I'(1 — t) have Cauchy-product
which is convergent in (—1,1) and equals the product of their limits. By the uniqueness of
Taylor expansions, it follows that the expansion around zero for m(t) has radius of convergence,
R, at least equal to 1, and that equation (29) holds not only for t € (~71/2,71/2) (as we proved
before), but also for t € (—1/2,1/2).

Finally, we need to prove that the radius of convergence of m(t) is exactly 1. This follows
from equation (33): If it were that R > 1 then m(t) would be differentiable in (—R, R), and
thus, continuous on the closed and bounded interval [—1,1], and hence, it would be bounded
there; but it would then be bounded in the open interval (—1,1). By equation (33), the prod-
uct M(—t/2)e~"I'(1 — t) should be bounded in (—1,1), a contradiction, since the function
M(~t/2)e™* is continuous for all ¢t € IR and is never zero, but lim;_; I'(1 — t) = 4oo0.

Hence, R = 1, which means the radius of convergence of m(t) (and thus of the Taylor
expansion of m(z) for complex z) is exactly 1. O

Although equation (29) is an analytical formula for the moment generating function of X,
we do not know the function m(—2¢) explicitly. In the following paragraphs we try to deduce as
much information about m(~—2t) as possible. First we will try to extend this function analytically
to the complex plane.

Using complex analysis we can prove that thefunction 1/(e?"*I'(1+2z)) is entire with simple
zeroes at the simple poles of I'(1+2z), that is, at z = —-1/2, -1, -3/2,-2,-5/2,.... This follows
easily from the canonical product formula ([11], pp.457-460)

1 o 2z, _2:

which is a special case of the Weierstrass factorization theorem. Recall, however, that M;(z),
the analytic continuation of M(z) from the real line to the complex plane, is also entire, and is
never zero for real z. Therefore, if we define

m(z) = My(—2/2)e”"*T(1 - 2) (35)

. _ 1zl <A

for all complex z for which I'(1 — 2) is defined, then m(—22), which equals m(—2z) for s-n-the

snit-eirele, is analytic everywhere except at the points 2 = -1/2,-1,-3/2,~2,-5/2,..., where

it has simple poles. In other words, /(—22) is the analytic continuation of the function m(—2z2)
to the set C — {-1/2,-1,-2,-3/2,...}. _

Using properties of the characteristic function of X we can deduce some information about
m(—2it). From what we said in the previous section, we conclude that the characteristic function
of X is given by ( )

m(—2it :
#(t) = ST+ 231)" (36)

13




Notice I'(1 — #t) is the characteristic function of a Type I extreme value distribution with
density
fe(z) = exp(—z —exp(—z)) for —o0 <z < 0. (37)

Thus, €27*T'(1 + 2it) is the characteristic function of a distribution from the same scale-location
family with densityifg(—;r/Z + 7). For more information see [5] (p.206) or [12] (p.54).

Note that m(—2it) is a characteristic function, because it is the product of two character-
istic functions, since m(—2it) = ¢(t)e*’T(1 + 2it). So m(—2it) has all the properties of such
functions: it is uniformly continuous in IR, and is positive definite. Actually, it corresponds to
the convolution of Fx and the extreme value distribution. In addition, using (9), we have

VieR: |m(-2it)| < |T(1+2it)| < 1. (38)

The first inequality can be used to prove that /m(—2it), with ¢ € IR, is the characteristic function
of a distribution which has a continuous density, f;,(z), with respect to the Lebesgue measure,
given by the formula

fnlz) = % f:, e~ (~2it)dt (39)

for all real z. This follows from the fact that m(—2it) is absolutely integrable for real ¢ (see [2],
p.357). This last claim can be proved using the first inequalities (38) and the fact that I'(1+ 2it)
is absolutely integrable for ¢ € IR (see Appendix B). (The fact that /m(—2it) has a density can
be very easily proved using Fubini’s theorem and the fact that 7m(—2it) is the convolution of
two characteristic functions which both have densities. However, this does not prove that its
density is a continuous function.)

Finally, the Riemann-Lebesgue theorem ([2], p.354) and the fact that 7(—2it) is a charac-
teristic function that has a density imply that

Itllim m(—2it) = 0. (40)

Future research might try to identify the function 7(z), using the above information about
the behaviour of m(z) on the complex plane in general, and on the real and imaginary lines, in
particular. However, any attempt to find a “closed form” expression of m(z) will probably have
to start with the implicit recurrence about B,’s (as given by equations (18), (19), and (20)).

Finally, as we said before, the material in this section can be used to prove that the ratio
B, /p! converges to a positive number. Actually, we can prove the following proposition.

Proposition 6.2 The ratio B,/p! converges to a number v > 0. In addition, M(-3) = ve.
Proof: From equation (35) we get
(1 —=2)m(2) = My(—2/2)e”"*(1 - 2)I'(1 - 2) (41)

for all z € C - {1,2,3,...}. Note that lim,_,;(1 — z)['(1 — 2) equals the residue of I'(1 — z) at
the simple pole z = 1, which is 1. Therefore,

B_IH(I —z)m(z) = Mi(-1/2)e™". (42)
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In addition, note that although the function mm(2) is not defined at z = 1, the function
(1— z) m(z) has a removable singularity at z = 1, because 7(z) has a simple pole at 2 = 1. As
we saw above, the value of (1 — z)m(2) when z = 1 can be set equal to M;(—1/2)e™. We can
also say that (1 — z)m(z) is analytic in the interior of the circle with center at the origin and
radius 2. Since the function m(z) has a simple pole at z = 2, then so does (1 — z)/(z). There-
fore, the radius of convergence of the Taylor expansion of (1 — z)m(z) is equal to 2. However,
for | z |< 1,

(1-2)m(z)=(1-2)1+ Z (43)

k=2 k!

and the two series (one of which is finite) in the last product are absolutely convergent. Therefore,
(1 — z)m(z) equals the Cauchy product of the two series ([15], p.74), i.e., for | z |< 1,

(1= 2ym(a) = 1+ 305 - o Vi (44)

k=1

But Taylor expansions are unique, so the last equation should hold for | z |< 2, and in particular
for 2 = 1. Therefore,

My(-1/2)e™ = lim(l—z)ﬁz(z)

" Br_1
- mhi“oo(l+z W -
= lim B—"I'

m—oo !

Therefore, we have proved that the limit lim,,—, B, /m! exists, and if we denote it by v, then
M(-1/2) = ve". (45)

Since a moment generating function is always positive, then v > 0. O

7 The indeterminacy of the coefficient B;

We noted earlier that Hennequin proved that there is a sequence of numbers (B, | p > 0)
such that A, = L,(By,Bs,...,By,), where the L,’s can be calculated through equation (17).
Furthermore, the B,’s satisfy equations (18), (19), and (20). Setting p = 0 we concluded that
By = 1. However, by setting p = 1, we found that B; = 0/0; i.e., B; is indeterminate. In section
2 we claimed that no matter what the value of B; is, the cumulant formula of Hennequin,
equation (16), does not change for p > 1. This means that the value of A,, for p > 1, stays the
same if we change the value of B;. Note, however, that A; = B; and the values of B, change
with By. The purpose of this section is to prove these claims, and illustrate that formula (29)
essentially stays the same.

For every number b denote by B, ; the sequence of B,’s we get if we set By = b. Therefore,
Boy =1, By = b, and the B, }’s are defined by equation (21), and satisfy equations (18), (19),

15
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and (20). So the B,’s, which are shown in Table 1 and which we used in sections 5 and 6, were
the B,o’s. In Appendix C it is shown that for all p > 0,

P
Bp,b = Z ( g ) Bp—k,D bk- (46)

k=0
To show that the value of A,, for p > 1, does not change with B, it is sufficient to show
that for every b,
Vp >1: Lp(Bl,bu B?.b:'- -sBp,b) = LP(BI,D'} B2,01 . -'1Bp,0)' (47)

To do that, let my(z) be the exponential generating function of the sequence (Bpp | p 2 0) for
every b; i.e.,
my(z) = Z —LBogP, (48)

p=0 pl

But, by formally multiplying series, we deduce from equation (46), that
ma(z) = mo(z)e*®. (49)

Therefore, using equation (17) we have

P

ZLP(BI,EH B?,b"-in,b)x_.l = lﬂmb(z)
p>0 p-
= In(mo(z)e*®)
= b +]_l1mc|(.'ﬂ)
CBp
= (b+ Ll(Bl,D))+ ZLP(BI-D!BQ.O'“!BP,U)E‘

p>1

Matching coefficients we deduce (47). We also see that Li(Bi1) = b+ L1(Bi0), which shows
that the value of A; changes with the value of B;. Actually, since In(1 + Biz) &~ Bz as a first
order Taylor approximation, then 4; = Bi.

Now let’s see how equation (29) is affected by changing the value of B;. Recall that that
formula was derived under the assumption that By = 0. So in the notation of this section it
should read:

mg(—Qi)
§ = . 5
For|t]<%_— M(t) T (T 1 20) (50)
Using equation (49) we have for | ¢ [< 1:
Z
_be__mp(—2t)
_ 51
M(t)=e T T 20)’ (51)

which means that essentially the formula stays the same.

[n section 6 we saw that under the assumption B; = 0, B, /p! converges to a positive number,
denoted there by v. In the notation of this section, this fact becomes limy oo Bpo/p! = v > 0.
A similar result holds for the B, ’s.
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Proposition 7.1 limy_ Bys/p! = veb.

Proof: Let ¢ be given. Then we may choose N > 0 such that for all £ > N we have

&a_l

k! a2}

<
2elbl”
Also, it follows that the sequence B,o/p! is bounded, say by M.
Since the Taylor expansion of e¥ around z = 0 has infinite radius of convergence, we can
choose N’ > 0 such that for all £ > N’ we have

k
| 31" .
g1 @ <o b
and - 5]
“ €
< . 54
—k;NH a! 4| v (54

Let N” := max(N,N')+ 1. Since a < k— N iff k —a > N, then for all K > N” we have:

By b I b%Bi—s0 b*
k!"”’sl: Z'(ka _z_:oﬁ
k-—N k o
l Bk—a 0 bﬂBk—aD ba
= —_— -]+ —_— - —
a=0 a' (k a)l ) n=k—EN+1 a!(k == G)! a=k§+l al
k—-N k o
Ib'u B.‘:—aO 'b'n lb,a
€ 5 0 _yl+M b +lvl Y
3_0 (k = a’)l a=k-N+1 a! a=k—=N+1 al
eltl —
€ = 151 + M Tl | v l ' |

= €.

This completes the proof. O

Finally, we give an intuitive explanation of why B; is indeterminate. The reason is that
Fx (which as we know has mean zero) is not the only distribution that satisfies the stochastic
equation (1). For any constant d, the distribution Fy 4, satisfies (1) too, that is, a location family
of distributions satisfies that equation, and as we know Mx,4(1) = e®* Mx(t). Apparently, the
non-uniqueness of solution to equation (1) causes the coefficient B; (which is related to the first
moment) to be indeterminate.
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A Maple implementation of the recurrence for B,’s

The following Maple V program produces the coefficients B,, given by formulas (18), (19), and
20). The Stirling numbers of the first kind should be loaded through the combinatorics package.

with(combinat);
R(0):=1;
h(1):=0;

#For the upper limit of the ‘‘for’’ loop, we can choose any number
#as long as Maple V has enough memory.

for j from 2 to 25 do

g:=proc(k)

local a;

sum((-1)"a*h(k-a)/(a'*(k-a)!*2"a),a=0..k)

end;

f:=proc(r)

local i;

sum(stirlingl(r+1,i+1)*g(r-1i),i=0..r)

end;

b:=proc(p)

foral r, rr, &, i;

(-1)"p/(p-1)*(sum(stirlingl (p+2,r+1)*h(p-r)/(p-r)!,r=1..p)+
sun(f (rr)*£f(p-rr) ,rr=1..p-1)+
2=(-1)"p*p!*sum((-1)“a*h(p-a)/(a!*(p-a)!*27a),a=1..p)+
2xsum(stirlingl(p+1,i+1)*g(p-i),i=1..p))

end;

h(j):=simplify(b(j));

od;

Note that we use the function A (which equals b) so that we avoid the use of the awkward
recursion of Maple.

Note also that we have not loaded the Stirling numbers through the library function “stirl”
(by saying “readlib(stirl)”), as the Maple reference manual ([4]) says, but through the combi-
natorics package (by saying “with(combinat)”), and the function “stirlingl”. Apparently, the
correct specification of the Stirling numbers depends on the computer system.
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B Proof of the absolute integrability of T'(1 + 2it)

The purpose of this appendix is to show that

/°° | T(1 + 2it) | dt < oo. (55)

—00

This fact implies, using the inequalities (38), that m(—2it) is absolutely integrable, which in
turn implies that m(—2it) has a continuous density with respect to the Lebesgue measure.

Using properties of the gamma function, we can prove our claim by first noticing that for all
real t # 0,

|IT1+2it) > = T+ 2it)T(1 + 2it)
= T(1+ 2it)[(1 — 2it)
T(1 + 2it)[(—2it)(—2it)
= (=2it)T(1 + 2it)T(1 — (1 + 2it))

sin (1 + 2it)
4ri
e21rt _ e—21rt 2

Therefore, to prove (55) it is sufficient to prove that

dt < oo. (56)

g2mt _ g—2mt

If the value of the integrand at t = 0 is defined to be 1, then the integrand is continuous in IR.
Since the integrand is also symmetric around zero, to prove (55), it is sufficient to prove that

for some ¢ > 0 we have
o 4rt
fc { e < (57)

Since limp—co €™ /(€™ — ¢~27*) = 1, then we may choose ¢ > 1 such that

1 2

6211':: — e—2rz — elrx ”

Yz 2 c: (58)

But then

/ Axt dtgf VSrte‘Z“dtS\/Sr/ te~™tdt < oo.

The proof of (55) is complete.
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C  Proof of equation (46)

'lhpurpose of this appendix is to prove equation (46). To do that we need to know some details

o how Hennequin proved equations (18), (19), and (20). Some of the notation in this paper is

_ Serent from that in Hennequin’s thesis. We have also corrected some typographical errors.
For every number b define Byp = 1 and By = b, and for p > 1, define recursively B, as

“!I'S:
P p—1
By = (—1)”( Y s(p+2,7+ 1)Bprp/(0=1N+ ) FrpFprp+
r=1 r=1

1P S (=1 By /(al(p— 0)12%) 4+ 23 s(p+ L, + 1)Cpoip) /(2 — 1) (59)

a=1 =1
where .
Vr>20: Fp=_ s(r+1,i+1)Grip (60)
i=0
and
( l)uBk a
k>0:
Yek>0: Gip= Za‘(k—a)'Q“ (61)
&t follows that the B, y’s satisfy:
P
Vp>0: Y s(p+2,7r+1)Bprp/(p—7)+ Z FopFprp =0. (62)
r=0 r=0
In his thesis, Hennequin proves that there is a sequence (B, | p > 0) such that
Vp20: Ay, = Ly(By,Ba,...,Bp). (63)

Surthermore, he proves that these numbers satisfy equations (18), (19), and (20), and thus,
#quation (21). If we define ¢ := By, then these numbers are nothing else but (B, | p > 0).
Let b be given. We shall first prove that

P
Vp>0: Bpp= Z ( g ) By_k.(b - e)F. (64)
k=0
To do that, define for all p > 0 the polynomials
Ey(y) = Z 'J’)‘;’J, ; (65)

Notice that these polynomials depend on c.
Define the symbol De to be the derivative operator; specifically, De = d/dy. In his thesis,
Heanequin proves that the E,(y)’s satisfy the differential equation

-(p+ 1J!( 1;1_11 ) o(y) = ZF(f)(y)F(p—r)(y), (66)

r=0
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where ok
Fw= Y St ( i ) Ed(v). (67)

atd=r
Note that the polynomials E,(y) satisfy the relation

DeE,(y) = Ep-1(y)- (68)

Also for all positive integers i and p:

3! ( Dei_ 1 ) Ep(y) — (De = 1)(D8 i 2) od .(De — 1'.)Ep(y)
= S s(i+ Lk +1)DEW)
k=0
inf(i,p)
= 3 s(i+1k+1D)Ek(y),

k=0

using equation (68).

The previous steps can be justified using the generating function of the Stirling numbers of
the first kind ([1], p.824).

Using the previous identities, equations (66) and (67) become

inf(p+1,p) P
S s(p+ 2+ 1) Ep--(y) + ST F(r)(y)Flp—r)(¥) =0, (69)
r=0 r=0
and fatio
Fw= 5 S S s+ Lk+ DB (70)
atd=r k=0

Note that in the last equation the index d is always less than or equal to the index r. Changing
the order of summation in the last equation, defining

Gl = 3 gt Brealt) (1)
and letting y = b — ¢, we find that _
Vp é s(p+2,r+ D)Epr(b—0)+ i:oF(r)(b _)F(p-r)b—c)=0 (72)
where .
F(r)(b—c) =Y s(r+1,i+1)G(r- )(b—c). (73)

1=0

Therefore, the sequence (Ep(b—c¢)p!|p 2> 0) satisfies equations (18), (19), and (20), where
instead of B, we have Ep(b— c)p! instead of F(r) we have F(r)(b— c), and, finally, instead of
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* &) we have G(k)(b— c). But also, Eg(b—¢)0! = 1 = Boy, and E1(b—c)1! = b= By ;. Hence,
all p > 0 we have Ep(b— ¢)p! = By, from which equation (64) follows easily.
Since equation (64) holds for all b, then, in particular, it holds for b = 0, i.e.,

Vp>0: Bpo= i ( z ) By—c(—c)k. (74)

k=0
For every b, let my(z) be the exponential generating function of the sequence (B, | p > 0),

o0

my(z) = 3 Bob oo (75)

p=0 o

using equations (64) and (74) we have:

W'BP _ p—k.c (b“c)k P
2 b - E(Z :,)l k! )a:

p=0 p‘ p=0 k—D
= mc(:c)e“ —c)z

= (mc(a:)e"“)eb"'

- (B (F e Gy

p=0 k=0

= ¢* Z —1"7’9:5”
= Z ( Z p_:)?kl)

p—Ok—O

Matching coefficients we can easily deduce equation (46).
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FIGURE 1

Graph of the density of X.
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FIGURE 2

Grapn of the moment generating function of X.
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FIGURE 3

nd art of ¢
Grapn of the cnaractenstic function of X. The upper grapi denotes the real p
while the lower part denotes the imaginary part.
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