[go: up one dir, main page]

login
A330701
Numbers k such that psi(phi(k)) = 2 * phi(psi(k)), where psi(k) is the Dedekind psi function (A001615) and phi(k) is the Euler totient function (A000010).
1
26, 39, 45, 51, 52, 58, 74, 82, 98, 104, 111, 116, 135, 142, 146, 147, 148, 164, 178, 195, 196, 208, 219, 232, 284, 286, 292, 296, 328, 356, 357, 386, 392, 405, 406, 416, 435, 464, 495, 555, 561, 568, 572, 574, 579, 584, 585, 592, 598, 615, 622, 638, 646, 650
OFFSET
1,1
COMMENTS
Sandor proved that this sequence is infinite.
LINKS
Jozsef Sandor, On the composition of some arithmetic functions, II, Journal of Inequalities in Pure and Applied Mathematics, Vol. 6, No. 3 (2005), Article 73.
EXAMPLE
26 is in the sequence since psi(phi(26)) = psi(12) = 24, and 2 * phi(psi(26)) = 2 * phi(42) = 2 * 12 = 24.
MATHEMATICA
psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); Select[Range[1000], psi[EulerPhi[#]] == 2 * EulerPhi[psi[#]] &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Dec 26 2019
STATUS
approved