[go: up one dir, main page]

login
A330667
Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose atoms are the prime indices of n.
4
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 3, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 0, 1, 1, 5, 5, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 0, 1, 1, 5, 9, 5, 0, 1, 0, 1, 0, 1, 0, 1, 7, 7, 0, 1, 1, 0, 1, 0, 1, 5, 5, 0, 1, 1, 3
OFFSET
1,18
COMMENTS
A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
Triangle begins:
{}
1
1
1 0
1
1 0
1
1 1 0
1 0
1 0
1
1 2 0
1
1 0
1 0
1 3 2 0
1
1 2 0
1
1 2 0
Row n = 84 counts the following multisystems (commas elided):
{1124} {{1}{124}} {{{1}}{{1}{24}}}
{{11}{24}} {{{11}}{{2}{4}}}
{{12}{14}} {{{1}}{{2}{14}}}
{{2}{114}} {{{12}}{{1}{4}}}
{{4}{112}} {{{1}}{{4}{12}}}
{{1}{1}{24}} {{{14}}{{1}{2}}}
{{1}{2}{14}} {{{2}}{{1}{14}}}
{{1}{4}{12}} {{{2}}{{4}{11}}}
{{2}{4}{11}} {{{24}}{{1}{1}}}
{{{4}}{{1}{12}}}
{{{4}}{{2}{11}}}
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
totfac[n_, k_]:=If[k==1, 1, Sum[totfac[Times@@Prime/@f, k-1], {f, Select[facs[n], 1<Length[#]<PrimeOmega[n]&]}]];
Table[totfac[n, k], {n, 100}, {k, PrimeOmega[n]}]
CROSSREFS
Row lengths are A001222.
Row sums are A318812.
The last nonzero term of row n is A330665(n).
Column k = 2 is 0 if n is prime; otherwise it is A001055(n) - 2.
Sequence in context: A033778 A091586 A363037 * A116377 A131964 A356241
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Dec 27 2019
STATUS
approved