[go: up one dir, main page]

login
A330302
Number of chains of 2-element subsets of {0,1, 2, ..., n} that contain no consecutive integers.
8
1, 1, 3, 51, 18731, 408990251, 921132763911411, 324499299994016295527283, 25190248259800264134073495741338539, 576797123806621878513443912437627670334052360619
OFFSET
0,3
COMMENTS
For n >= 1, a(n) is the number of chains of binary reflexive symmetric matrices of order n.
The number of chains of strictly upper triangular or strictly lower triangular matrices.
Also, number of chains in power set of (n^2-n)/2 elements.
a(n) is the number of distinct reflexive symmetric fuzzy matrices of order n.
LINKS
S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
V. Murali, Combinatorics of counting finite fuzzy subsets, Fuzzy Sets Syst., 157(17)(2006), 2403-2411.
V. Murali and B. Makamba, Finite Fuzzy Sets, Int. J. Gen. Syst., Vol. 34 (1) (2005), pp. 61-75.
R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1) (1991), 23-31.
FORMULA
a(n) = A007047((n^2-n)/2) = A007047(A161680(n)).
MAPLE
# P are the polynomials defined in A007047.
a:= n -> (m-> 2^m*subs(x=1/2, P(m, x)))(n*(n-1)/2):
seq(a(n), n=0..9);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 4,
add(b(n-j)*binomial(n, j), j=1..n))
end:
a:= n-> `if`(n<2, 1, b(n*(n-1)/2)-1):
seq(a(n), n=0..10); # Alois P. Heinz, Feb 11 2020
MATHEMATICA
Array[2 PolyLog[-(#^2-#)/2, 1/2] - 1 &, 10, 0]
Table[2*PolyLog[-(n^2-n)/2, 1/2] - 1, {n, 0, 29}]
Table[LerchPhi[1/2, -(n^2-n)/2, 2]/2, {n, 0, 19}]
CROSSREFS
KEYWORD
nonn
AUTHOR
S. R. Kannan, Rajesh Kumar Mohapatra, Jan 01 2020
STATUS
approved