[go: up one dir, main page]

login
A329801
Expansion of Sum_{k>=1} x^(k*(k + 1)/2) / (1 + x^(k*(k + 1)/2)).
1
1, -1, 2, -1, 1, -1, 1, -1, 2, 0, 1, -3, 1, -1, 3, -1, 1, -1, 1, -2, 3, -1, 1, -3, 1, -1, 2, 0, 1, -1, 1, -1, 2, -1, 1, -2, 1, -1, 2, -2, 1, -2, 1, -1, 4, -1, 1, -3, 1, 0, 2, -1, 1, -1, 2, -2, 2, -1, 1, -5, 1, -1, 3, -1, 1, 0, 1, -1, 2, 0, 1, -4, 1, -1, 3, -1, 1, 0, 1, -2, 2, -1, 1, -3, 1
OFFSET
1,3
FORMULA
G.f.: Sum_{k>=1} (-1)^(k + 1) * theta_2(x^(k/2)) / (2 * x^(k/8)).
a(n) = Sum_{d|n} (-1)^(n/d + 1) * A010054(d).
MATHEMATICA
nmax = 85; CoefficientList[Series[Sum[x^(k (k + 1)/2)/(1 + x^(k (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[Sum[(-1)^(n/d + 1) Boole[IntegerQ[Sqrt[8 d + 1]]], {d, Divisors[n]}], {n, 1, 85}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Nov 21 2019
STATUS
approved