[go: up one dir, main page]

login
A329754
Doubly pentagonal pyramidal numbers.
4
0, 1, 126, 3078, 32800, 213750, 1008126, 3783976, 11985408, 33297075, 83338750, 191592126, 410450976, 828497488, 1589341950, 2917620000, 5154021376, 8801526501, 14585352318, 23529456550, 37052820000, 57089119626, 86233820926, 127923156648, 186649920000, 268221484375, 380065968126
OFFSET
0,3
FORMULA
G.f.: x*(1 + 116*x + 1863*x^2 + 7570*x^3 + 9350*x^4 + 3474*x^5 + 304*x^6 + 2*x^7)/(1 - x)^10.
a(n) = A002411(A002411(n)).
a(n) = Sum_{k=0..A002411(n)} A000326(k).
a(n) = n^4 *(n^3+n^2+2) *(n+1)^2 /16. - R. J. Mathar, Nov 28 2019
MATHEMATICA
A002411[n_] := n^2 (n + 1)/2; a[n_] := A002411[A002411[n]]; Table[a[n], {n, 0, 26}]
Table[Sum[k (3 k - 1)/2, {k, 0, n^2 (n + 1)/2}], {n, 0, 26}]
nmax = 26; CoefficientList[Series[x (1 + 116 x + 1863 x^2 + 7570 x^3 + 9350 x^4 + 3474 x^5 + 304 x^6 + 2 x^7)/(1 - x)^10, {x, 0, nmax}], x]
LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 126, 3078, 32800, 213750, 1008126, 3783976, 11985408, 33297075}, 27]
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Nov 20 2019
STATUS
approved