[go: up one dir, main page]

login
A329676
Number of excursions of length n with Motzkin-steps avoiding the consecutive steps UD and HH.
2
1, 1, 0, 1, 2, 2, 5, 10, 16, 34, 68, 128, 264, 536, 1073, 2217, 4569, 9404, 19594, 40875, 85420, 179525, 378069, 797935, 1689550, 3584560, 7620071, 16234510, 34647429, 74067643, 158603482, 340121431, 730403622, 1570644830, 3381674388, 7289500709, 15730862630, 33983333681
OFFSET
0,5
COMMENTS
The Motzkin step set is U=(1,1), H=(1,0) and D=(1,-1). An excursion is a path starting at (0,0), ending on the x-axis and never crossing the x-axis, i.e., staying at nonnegative altitude.
LINKS
FORMULA
G.f.: (1+t^2+t^3-sqrt(t^6+2*t^5-3*t^4-6*t^3-2*t^2+1))/(2*t^2*(1+t)).
EXAMPLE
a(4)=2 since we have 2 excursions of length 4 avoiding UD and HH, namely UHDH and HUHD.
MATHEMATICA
CoefficientList[Series[(1 + x^2 + x^3 - Sqrt[x^6 + 2*x^5 - 3*x^4 - 6*x^3 - 2*x^2 + 1])/(2*x^2*(1 + x)), {x, 0, 40}], x] (* Michael De Vlieger, Oct 24 2023 *)
CROSSREFS
Cf. A329675 which counts excursions avoiding consecutive steps UD and HH.
Sequence in context: A246864 A262924 A331540 * A247354 A317877 A075125
KEYWORD
nonn,walk
AUTHOR
Valerie Roitner, Nov 29 2019
STATUS
approved