[go: up one dir, main page]

login
A329281
Decimal expansion of the quantile z_0.95 of the standard normal distribution.
9
1, 6, 4, 4, 8, 5, 3, 6, 2, 6, 9, 5, 1, 4, 7, 2, 7, 1, 4, 8, 6, 3, 8, 4, 8, 9, 0, 7, 9, 9, 1, 6, 3, 2, 1, 3, 6, 0, 8, 3, 1, 9, 5, 7, 4, 4, 2, 7, 5, 3, 2, 2, 0, 7, 1, 7, 6, 9, 6, 7, 2, 0, 9, 4, 4, 0, 4, 1, 0, 6, 3, 5, 1, 9, 9, 4, 4, 6, 7, 4, 1, 7, 6, 6, 4, 8, 7, 8, 4, 8, 5
OFFSET
1,2
COMMENTS
z_p is the number z such that Phi(z) = p, where Phi(x) = Integral_{t=-oo..x} (1/sqrt(2*Pi))*exp(-t^2/2)*dt is the cumulative distribution function of the standard normal distribution. This sequence gives z_0.95 (also called the 95th percentile).
This number can also be denoted as probit(0.95), where probit(p) is the inverse function of Phi(x). See the Wikipedia link below.
LINKS
Eric Weisstein's World of Mathematics, Quantile Function.
Wikipedia, Probit.
EXAMPLE
If X ~ N(0,1), then P(X<=1.6448536269...) = 0.95, P(X<=-1.6448536269...) = 0.05.
MATHEMATICA
RealDigits[(x /. FindRoot[10*Erfc[x] == 1, {x, 1, 2}, WorkingPrecision -> 120]) * Sqrt[2]][[1]] (* Amiram Eldar, Aug 23 2024 *)
PROG
(PARI) default(realprecision, 100); solve(x=0, 5, erfc(x)-2*0.05)*sqrt(2)
CROSSREFS
Quantiles of the standard normal distribution: A092678 (z_0.75), A329280 (z_0.9), this sequence (z_0.95), A329282 (z_0.99), A329283 (z_0.995), A329284 (z_0.999), A329285 (z_0.9995), A329286 (z_0.9999), A329287 (z_0.99999), A329363 (z_0.999999).
Sequence in context: A198840 A211268 A021612 * A201587 A110756 A200698
KEYWORD
nonn,cons
AUTHOR
Jianing Song, Nov 12 2019
STATUS
approved