[go: up one dir, main page]

login
A329057
1-parking triangle T(r, i, 1) read by rows: T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i) with k = 1 and 0 <= i <= r.
6
1, 1, 1, 2, 3, 3, 5, 10, 16, 16, 14, 35, 75, 125, 125, 42, 126, 336, 756, 1296, 1296, 132, 462, 1470, 4116, 9604, 16807, 16807, 429, 1716, 6336, 21120, 61440, 147456, 262144, 262144, 1430, 6435, 27027, 104247, 360855, 1082565, 2657205, 4782969, 4782969, 4862, 24310, 114400, 500500, 2002000, 7150000, 22000000, 55000000, 100000000, 100000000
OFFSET
0,4
COMMENTS
The k-parking numbers interpolate between the generalized Fuss-Catalan numbers and the number of parking functions (see Yip).
LINKS
Carolina Benedetti, Rafael S. González D’León, Christopher R. H. Hanusa, Pamela E. Harris, Apoorva Khare, Alejandro H. Morales, Martha Yip, The volume of the caracol polytope, Séminaire Lotharingien de Combinatoire 80B.87 (2018).
Martha Yip, A Fuss-Catalan variation of the caracol flow polytope, arXiv:1910.10060 [math.CO], 2019.
FORMULA
T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i).
T(r, 0, 1) = A000108(r).
T(r, r, 1) = A000272(r + 1).
EXAMPLE
r/i| 0 1 2 3 4
———————————————————————
0 | 1
1 | 1 1
2 | 2 3 3
3 | 5 10 16 16
4 | 14 35 75 125 125
MATHEMATICA
T[r_, i_, k_] := (r + 1)^(i-1)*Binomial[k*(r + 1) + r - i - 1, r - i]; Flatten[Table[T[r, i, 1], {r, 0, 9}, {i, 0, r}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Nov 02 2019
STATUS
approved