[go: up one dir, main page]

login
A328948
Number of primes that are a concatenation of two positive integers whose product is n.
1
1, 0, 2, 1, 0, 2, 2, 0, 1, 1, 0, 1, 2, 0, 2, 0, 0, 2, 1, 0, 3, 1, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 3, 0, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 3, 1, 0, 2, 0, 0, 3, 1, 0, 1, 0, 0, 4, 1, 0, 3, 1, 0, 2, 2, 0, 1, 1, 0, 1, 2, 0, 3, 1, 0, 2, 2, 0, 3, 0, 0, 1, 2, 0, 1, 3, 0, 3, 1, 0, 0
OFFSET
1,3
COMMENTS
Records: 1, 3, 21, 63, 231, 924, 4389, 5187, 51051, 69069, 127281, 245973, 302841, 969969, 1312311, 1716099. - Corrected by Robert Israel, Dec 14 2023
This is not always the same as the number of divisors d of n such that the concatenation of d and n/d is prime, because the same prime could occur for more than one divisor. For example, 1140678 = 14*81477 = 14814*77 with 1481477 prime, and this prime is counted only once in a(1140678) = 7. - Robert Israel, Dec 14 2023
LINKS
FORMULA
a(3n + 2) = 0.
EXAMPLE
1(11), 2(-), 3(13, 31), 4(41), 5(-), 6(23, 61), 7(17, 71), 8(-), 9(19), 10(101), 11(-), 12(43), 13(113, 131), 14(-), 15(53, 151), 16(-).
MAPLE
f:= proc(n)
if n mod 3 = 2 then return 0 fi;
nops(select(isprime, {seq(dcat(t, n/t), t = numtheory:-divisors(n))})
end proc:
map(f, [$1..200]); # Robert Israel, Dec 14 2023
PROG
(PARI) a(n) = sumdiv(n, d, isprime(eval(concat(Str(d), Str(n/d))))); \\ Michel Marcus, Nov 05 2019
(Magma) [#[a: d in Divisors(n)| IsPrime(a) where a is Seqint(Intseq(d) cat Intseq(n div d))]:n in [1..100]]; // Marius A. Burtea, Nov 05 2019
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved