OFFSET
0,4
COMMENTS
In general, for m >= 0, if we define f(n,m) = Sum_{p^k|n} Sum_{j=1..k} n^m/p^(m*j) (cf. A322664), then Sum_{k=1..n} f(k,m) = Sum_{k=1..n} Sum_{d|k} A069513(k/d) * d^m = Sum_{k=1..n} A069513(k) * F_m(floor(n/k)), where F_m(x) are the Faulhaber polynomials defined as F_m(x) = (Bernoulli(m+1, x+1) - Bernoulli(m+1, 1)) / (m+1).
Additionally, for m >= 1, Sum_{k=1..n} f(k,m) ~ Q(m+1) * n^(m+1)/(m+1), where Q(s) = Sum_{p prime} 1/(p^s - 1).
FORMULA
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Daniel Suteu, Oct 29 2019
STATUS
approved