OFFSET
0,3
COMMENTS
Partial sums of A003059.
Given a digraph whose vertices are numbered from 0 to n and in which an edge (u,v) exists iff u < v, a(n) is the maximum number of arcs that can be chosen so that for each vertex j other than 0 and n, the number of chosen arcs whose tail is vertex j equals the number of chosen arcs whose head is vertex j. - Xutong Ding, Dec 12 2023
LINKS
Peter Kagey, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = (1 + floor(sqrt(n)))*(6*n - floor(sqrt(n)) - 2*floor(sqrt(n))^2)/6. - Vaclav Kotesovec, Dec 26 2023
MATHEMATICA
Accumulate[Ceiling[Sqrt[Range[0, 60]]]]
Table[(1 + Floor[Sqrt[n]])*(6*n - Floor[Sqrt[n]] - 2*Floor[Sqrt[n]]^2)/6, {n, 0, 100}] (* Vaclav Kotesovec, Dec 26 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Kagey, Sep 21 2019
STATUS
approved