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An integer sequence (a,),~, is a linear divisibility sequence of order k if
the sequence satisfies a linear recurrence of order k and if a(n) divides a(m)
whenever n divides m and a(n) # 0. Examples include the 2-parameter fam-
ily of Lucas sequences of the first kind of order two, the 2-parameter family of
Lehmer sequences of order four and a 3-parameter family of fourth order linear
divisibility sequences due to Williams and Guy [4]. We construct two families
U.(P,Q,R) and U}(P,Q, R) of linear divisibility sequences of order 8, depend-
ing on three integer parameters P, @) and R. They are particular cases of a
larger family of linear divisibility sequences of order 8 studied in [3].

Let
f(x) =1+ Pz + Qz* + Ra® + 2* (1)

be a monic quartic polynomial with integer coeflicients. Let f(x) denote the
reciprocal polynomial of f(z) defined by
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We define two 3-parameter families of sequences U,, = U, (P, @, R) and
Uy =Ux(P,Q, R) by means of the rational function expansions
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Calculation gives the generating functions

(1= (@+3)a” = 2(P + R)a® — (Q + 3)a’ +4°)
(1+ Px+ Q2+ Rax3 + 2*) (1 + Ro + Q22 + Px3 + x%)

(4)
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Z Upz" = (P—R)x

n>1

Y Upz® = (P+R)x

n>1



Theorem 1.
(i) The sequence U, (P,Q, R) is a linear divisibility sequence of order 8.
(ii) The sequence U (P,Q, R) is a linear divisibility sequence of order 8.

Proof. (i) It is immediate from the rational generating function (4) that U, is
an integer sequence satisfying a linear recurrence of order 8. We show that U,
is a divisibility sequence. Let

f(@)=(z—a1)(x —a2) (. —a3z) (v — aq)

be the factorisation of the quartic polynomial f(z) over C. The reciprocal
polynomial then factors as

fl2) = (1 —za1) (1 — zas) (1 — zas) (1 — o).
From (2), the generating function for U, is given by
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where the prime ’ indicates differentiation with respect to z.

Expanding the right side of (6) into geometric series yields

U,=a4+ay+ay+af ——— —— —— — . (7)
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We shall recast the sum (7) into the form of a product better suited to
proving divisibility properties of the numbers U,,. It is straightforward to
verify that if A, B,C and D are complex numbers such that ABC'D = 1 then

1 1 1 1
A+B+C’+D7Z—E—a—ﬁz(1—AB)(1—AC’)(1—BC’)D. (8)
Equivalently,
1 1 1 1 1-AD)(1-BD)(1-CD
A+B+C+D——-——=——=— — :7( I ) ) (9)

A B C D D

2
(A +B+C+D— = — = — ) = —(1-AB)(1—AC)(1—AD)(1-BC)(1-BD)(1-CD).
(10)



Now a1, as, ag and a4 were defined as the zeros of the polynomial
f(x) =1+ Px+ Q2* + Ra® + 2. Hence ajazaszay = 1. Thus setting A = af,
B=qaf, C=af, D=} in (10) and comparing the result with (7) gives

Up=- ][] (1-aay). (11)

1<i<j<4

Thus, up to signs, the sequence U2 is the Lehmer-Pierce sequence [1], [2]
associated to the sextic polynomial s(2) = J[,<; ;<4 (z — ;). A routine
calculation gives o

s(x) = 2% — Q2° + (PR — 1)z* + (P? + R* — 2Q) 2* + (PR — 1)2* — Qz + 1.

Let n and m be positive integers and define

1_xnm

ﬁ = In(mil) + In(mfz) + P + xn + 1

P(z) =
6
and put S (z1,...,z¢) = H P (z;), a symmetric polynomial function in the
i=1
variables ;. Then by (11), when U,, # 0, the quotient
U2
Uy

= S(ﬂlv "'7ﬂ6)

is a symmetric polynomial function of the roots 3; of the integral sextic
equation s(z) = 0, and so is an integer by the fundamental theorem of
symmetric polynomials. Therefore U2 divides U2, and hence also U,, divides
Upm- This completes the proof that U, is a divisibility sequence.

(ii) From the rational generating function (5) of the sequence U, we see that
U} is an integer sequence satisfying a linear recurrence of order 8. The proof
that U is a divisibility sequence proceeds similarly to part (i).

From the generating function (3) we find
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When n is even it follows exactly as in part (i) that
*2
vt== II (1-afap). (13)
1<i<j<d4
Therefore, as in part (i), when n is even, U? divides U2, and hence also U

divides U*

nm:-



To handle the case when n is odd we convert the sum expression for U in (12)
into the form of a product by means of the following easily verified result: if
A, B,C and D are complex numbers such that ABCD =1 then

11 1 1
A+B+C+D+Z+ §+ 6+5: (1+AB) 1+ AC)(1+ BC)D. (14)
Equivalently,

1 1 1 1 (1+AD)1+BD)(1+CD)
A+B+CH D+t o+ o+ 5= 5

Multiplying (14) by (15) gives

. (15)

2
1 1 1 1
(A +B+CHD+ S+ 5t 5t D) = (1+AB)(14+AC)(1+AD)(1+BC)(1+BD)(1+CD).

(16)

Setting A =af, B=oay, C =af, D = in (16) and then using (12) we find

U= ][] (1+apa}) forn odd. (17)
1<i<j<4

Using (17), we will prove that when n is odd U} divides U},, . There are two
cases to consider depending on the parity of m. Firstly, suppose m is even. We
define

1_x’I'Lm

T _gn(m=l) _gn(m=2) 4 gn ]
1+am

P*(x) =
6
and put S* (1, ...,26) = H P* (z;), a symmetric polynomial function in the
i=1
variables ;. Then by (13) and (17), when U,, # 0, the quotient

U*Q

UTZ:; = S* (51) "'766)

is a symmetric polynomial function of the roots g; of the integral sextic
equation s(z) = 0, and so is an integer by the fundamental theorem of
symmetric polynomials. Thus, when n is odd and m is even, U;? divides U2,
and hence also U;; divides U},,,. The remaining case when m is odd can be
proven in a similar manner and is left to the reader. This completes the proof
that U is a divisibility sequence. [J
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