[go: up one dir, main page]

login
A327515
Number of steps to reach a fixed point starting with n and repeatedly taking the quotient by the maximum divisor that is 1, 2, or a nonprime number whose prime indices are pairwise coprime (A327512, A327514).
1
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0
OFFSET
1
COMMENTS
Positions of zeros are A289509.
First term > 1 is a(225) = 2.
First zero not in A318978 is a(17719) = 0.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Numbers that are 1, 2, or a nonprime number whose prime indices are pairwise coprime are listed in A302696.
FORMULA
a(15^n) = n.
EXAMPLE
We have 50625 -> 3375 -> 225 -> 15 -> 1, so a(50625) = 4.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[FixedPointList[#/Max[Select[Divisors[#], #==1||CoprimeQ@@primeMS[#]&]]&, n]]-2, {n, 100}]
CROSSREFS
See link for additional cross-references.
Sequence in context: A188510 A131734 A134452 * A327532 A073445 A285589
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 19 2019
STATUS
approved