OFFSET
0,2
FORMULA
Sum_{k=0..n} T(n, k) = A327420(n).
EXAMPLE
Triangle starts (at the end of the line is the row sum (A327420)):
[ 0] [ 1] 1
[ 1] [ 2, -2] 0
[ 2] [ 3, -3, 2] 2
[ 3] [ 4, -4, 3, 0] 3
[ 4] [ 5, -5, 4, 0, 2] 6
[ 5] [ 6, -6, 5, 0, 0, 0] 5
[ 6] [ 7, -7, 6, 0, 0, 3, 0] 9
[ 7] [ 8, -8, 7, 0, 0, 0, 0, 0] 7
[ 8] [ 9, -9, 8, 0, 0, 0, 4, 3, 0] 15
[ 9] [10, -10, 9, 0, 0, 0, 0, 0, -3, -2] 4
[10] [11, -11, 10, 0, 0, 0, 0, 5, 0, -3, 2] 14
PROG
(SageMath)
def divsign(s, k):
if not k.divides(s): return 0
return (-1)^(s//k)*k
def A327487row(n):
s = n + 1
r = srange(s, 1, -1)
S = [-divsign(s, s)]
for k in r:
s += divsign(s, k)
S.append(-divsign(s, k))
return S
# Prints the triangle like in the example section.
for n in (0..10):
print([n], A327487row(n), sum(A327487row(n)))
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Sep 14 2019
STATUS
approved