[go: up one dir, main page]

login
A326527
Sum of the sixth largest parts of the partitions of n into 9 squarefree parts.
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 9, 11, 16, 21, 29, 35, 49, 57, 77, 91, 118, 137, 177, 202, 255, 293, 363, 413, 509, 580, 707, 802, 969, 1097, 1319, 1481, 1764, 1980, 2337, 2615, 3069, 3421, 3982, 4431, 5126, 5689, 6553, 7240, 8301, 9169, 10451
OFFSET
0,12
FORMULA
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q)^2 * m, where mu is the Möbius function (A008683).
a(n) = A326523(n) - A326524(n) - A326525(n) - A326526(n) - A326528(n) - A326529(n) - A326530(n) - A326531(n) - A326532(n).
MATHEMATICA
Table[Total[Select[IntegerPartitions[n, {9}], AllTrue[#, SquareFreeQ]&][[All, 6]]], {n, 0, 60}] (* Harvey P. Dale, Jul 05 2022 *)
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 11 2019
STATUS
approved