[go: up one dir, main page]

login
A326474
A(n, k) = (m*k)! [x^k] MittagLefflerE(m, x)^n, for m = 3, n >= 0, k >= 0; square array read by descending antidiagonals.
3
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 22, 3, 1, 0, 1, 170, 63, 4, 1, 0, 1, 1366, 2187, 124, 5, 1, 0, 1, 10922, 59535, 7732, 205, 6, 1, 0, 1, 87382, 1594323, 599548, 18485, 306, 7, 1, 0, 1, 699050, 43033599, 39945364, 2416045, 36126, 427, 8, 1
OFFSET
0,9
EXAMPLE
Array starts:
[0] 1, 0, 0, 0, 0, 0, 0, ... A000007
[1] 1, 1, 1, 1, 1, 1, 1, ... A000012
[2] 1, 2, 22, 170, 1366, 10922, 87382, ... A007613
[3] 1, 3, 63, 2187, 59535, 1594323, 43033599, ...
[4] 1, 4, 124, 7732, 599548, 39945364, 2556712828, ...
[5] 1, 5, 205, 18485, 2416045, 352060805, 46660373965, ...
[6] 1, 6, 306, 36126, 6673266, 1544907006, 379696000626, ...
MATHEMATICA
(* The function MLPower is defined in A326327. *)
For[n = 0, n < 8, n++, Print[MLPower[3, n, 8]]]
PROG
(Sage) # uses[MLPower from A326327]
for n in (0..6): print(MLPower(3, n, 9))
CROSSREFS
Rows include: A000007, A000012, A007613.
Columns include: A051874.
Cf. A326476 (m=2, p>=0), A326327 (m=2, p<=0), this sequence (m=3, p>=0), A326475 (m=3, p<=0).
Sequence in context: A062154 A359619 A334159 * A266886 A267546 A228817
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 08 2019
STATUS
approved