OFFSET
1,1
COMMENTS
First differs from A326255 in lacking 2599.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x < z and t < y or z < x and y < t. This is a stronger condition than capturing, so for example {{1,3,5},{2,4}} is capturing but not nesting.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
667: {{2,2},{1,3}}
989: {{2,2},{1,4}}
1334: {{},{2,2},{1,3}}
1633: {{2,2},{1,1,3}}
1769: {{1,3},{1,2,2}}
1817: {{2,2},{1,5}}
1978: {{},{2,2},{1,4}}
2001: {{1},{2,2},{1,3}}
2021: {{1,4},{2,3}}
2323: {{2,2},{1,6}}
2461: {{2,2},{1,1,4}}
2623: {{1,4},{1,2,2}}
2668: {{},{},{2,2},{1,3}}
2967: {{1},{2,2},{1,4}}
2987: {{1,3},{2,2,2}}
3197: {{2,2},{1,7}}
3266: {{},{2,2},{1,1,3}}
3335: {{2},{2,2},{1,3}}
3538: {{},{1,3},{1,2,2}}
3634: {{},{2,2},{1,5}}
MATHEMATICA
nesXQ[stn_]:=MatchQ[stn, {___, {___, x_, y_, ___}, ___, {___, z_, t_, ___}, ___}/; (x<z&&y>t)||(x>z&&y<t)];
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[10000], nesXQ[primeMS/@primeMS[#]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 20 2019
STATUS
approved